Published Research

The following references cite studies that used data distributed by NSIDC. Please contact User Services if you have a reference you would like to share on this page.

2018

Konrad, Hannes, et al. 2018. Net retreat of Antarctic glacier grounding lines. Nature Geoscience 11: 258–262. doi: http://dx.doi.org/10.1038/s41561-018-0082-z.

Alley, K. E., et al. 2018. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sensing of Environment 210: 297-306. doi: http://dx.doi.org/10.1016/j.rse.2018.03.025.

Christoffersen, Poul, et al. 2018. Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture. Nature Communications 9. Art. #1064. doi: http://dx.doi.org/10.1038/s41467-018-03420-8.

Cullather, Richard and Sophie M. J. Nowicki. 2018. Greenland Ice Sheet Surface Melt and Its Relation to Daily Atmospheric Conditions. Journal of Climate 31(5): 1897–1919. doi: http://dx.doi.org/10.1175/JCLI-D-17-0447.1.

Hoffman, Matthew J., et al. 2018. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland. Geophysical Research Letters 45(2): 778–788. doi: http://dx.doi.org/10.1002/2017GL075659.

Joughin, Ian, Ben E. Smith. and Ian M. Howat. 2018. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. Journal of Glaciology 62(231): 1-11. doi: http://dx.doi.org/10.1017/jog.2017.73.

Koziol, Conrad and Neil Arnold. 2018. Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet. The Cryosphere 12(3): 971-991. doi: http://dx.doi.org/10.5194/tc-12-971-2018.

Liao, Heming, et al. 2018. Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sensing of Environment 209: 166-180. doi: http://dx.doi.org/10.1016/j.rse.2018.02.048.

Liu, Qingquan, et al. 2018. Inter-Calibration of Passive Microwave Satellite Brightness Temperatures Observed by F13 SSM/I and F17 SSMIS for the Retrieval of Snow Depth on Arctic First-Year Sea Ice. Remote Sensing 10(1). Art. #36. doi: http://dx.doi.org/10.3390/rs10010036.

Liu, Tingting, et al. 2018. Ice Velocity Variations of the Polar Record Glacier (East Antarctica) Using a Rotation-Invariant Feature-Tracking Approach. Remote Sensing 10(1). Art. #42. doi: http://dx.doi.org/10.3390/rs10010042.

Niwano, Masashi, et al. 2018. NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet. The Cryosphere 12(2): 635-655. doi: http://dx.doi.org/10.5194/tc-12-635-2018.

Stroeve, Julienne, et al. 2018. Investigating the local-scale influence of sea ice on Greenland surface melt . The Cryosphere 11(5): 2363-2381. doi: http://dx.doi.org/10.5194/tc-11-2363-2017.

2017

Alley, Karen E. 2017. Studies of Antarctic Ice Shelf Stability: Surface Melting, Basal Melting, and Ice Flow Dynamics. : 234 p. Ph. D. University of Colorado Boulder.

Arthern, Robert J., and C. Rosie Williams. 2017. The sensitivity of West Antarctica to the submarine melting feedback. Geophysical Research Letters 44(5): 2352–2359. doi: http://dx.doi.org/10.1002/2017GL072514.

Barry, Roger G. 2017. The Arctic Cryosphere in the Twenty-First Century. Geographical Review 107(1): 69-88. doi: http://dx.doi.org/10.1111/gere.12227.

Bevan, Suzanne L., et al. 2017. Centuries of intense surface melt on Larsen C Ice Shelf. The Cryosphere 11(6): 2743-2753. doi: http://dx.doi.org/10.5194/tc-11-2743-2017.

Brisbourne, A. M., et al. 2017. Bed conditions of Pine Island Glacier, West Antarctica. Journal of Geophysical Research - Earth Surface 122(1): 419-433. doi: http://dx.doi.org/10.1002/2016JF004033.

Bromirski, P. D., et al. 2017. Tsunami and infragravity waves impacting Antarctic ice shelves. Journal of Geophysical Research - Oceans 122(7): 5786-5801. doi: http://dx.doi.org/10.1002/2017JC012913.

Campbell, Adam J., et al. 2017. Could promontories have restricted sea-glacier penetration into marine embayments during Snowball Earth events?. The Cryosphere 11(3): 1141-1148. doi: http://dx.doi.org/10.5194/tc-11-1141-2017.

Cavanagh, J. P., D. J. Lampkin, and T. Moon. 2017. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ. Journal of Geophysical Research - Earth Surface 122(12): 2488–2505. doi: http://dx.doi.org/10.1002/ 2016JF004187.

Cooley, Sarah W., and Poul Christoffersen. 2017. Observation Bias Correction Reveals More Rapidly Draining Lakes on the Greenland Ice Sheet. Journal of Geophysical Research - Earth Surface 122(10): 1867–1881. doi: http://dx.doi.org/10.1002/2017JF004255.

Dawson, G. J. and J. L. Bamber. 2017. Antarctic Grounding Line Mapping From CryoSat-2 Radar Altimetry. Geophysical Research Letters 44(23): 11,886–11,893. doi: http://dx.doi.org/10.1002/2017GL075589.

Gourmelen, Noel, et al. 2017. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf. Geophysical Research Letters 44(19): 9796-9804. doi: http://dx.doi.org/10.1002/2017GL074929.

Gray, Laurence, et al. 2017. A revised calibration of the interferometric mode of the CryoSat-2 radar altimeter improves ice height and height change measurements in western Greenland . The Cryosphere 11(3): 1041-1058. doi: http://dx.doi.org/10.5194/tc-11-1041-2017.

Greene, Chad, David E.Gwyther, and Donald D.Blankenship. 2017. Antarctic Mapping Tools for Matlab. Computers & Geosciences 104: 151-157. doi: http://dx.doi.org/10.1016/j.cageo.2016.08.003.

Greene, Chad, et al. 2017. Wind causes Totten Ice Shelf melt and acceleration. Science Advances 3(11). Art. #e1701681. doi: http://dx.doi.org/10.1126/sciadv.1701681.

Greve, Ralf, Reinhard Calov, and Ute C. Herzfeld. 2017. Projecting the response of the Greenland ice sheet to future climate change with the ice sheet model SICOPOLIS. Low Temperature Science 75: 117-129. doi: http://dx.doi.org/10.14943/lowtemsci. 75. 117.

Guerreiro, Kévin , et al. 2017. Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval. The Cryosphere 11(5): 2059-2073. doi: http://dx.doi.org/10.5194/tc-11-2059-2017.

Habermann, M., M. Truffer, and D. Maxwell. 2017. Error sources in basal yield stress inversions for Jakobshavn Isbræ, Greenland, derived from residual patterns of misfit to observations. Journal of Glaciology 63(242): 999-1011. doi: http://dx.doi.org/10.1017/jog.2017.61.

Hill, Emily A., J. Rachel Carr, and Chris R. Stokes. 2017. A Review of Recent Changes in Major Marine-Terminating Outlet Glaciers in Northern Greenland. Frontiers in Earth Science 4(1): Art. #111. doi: http://dx.doi.org/10.3389/feart.2016.00111.

Jeofry, Hafeez, et al. 2017. A deep subglacial embayment adjacent to the grounding line of Institute Ice Stream, West Antarctica. Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes. Siegert, M. J., Jamieson, S. S. R., and White, D. A. (eds) . London: Geological Society, . doi: http://dx.doi.org/10.1144/SP461.11.

Johnson, Joanne S., et al. 2017. The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic 14C and 10Be dating. Quaternary Science Reviews 178: 77-88. doi: http://dx.doi.org/10.1016/j.quascirev.2017.11.003.

Kim, Yongwook, et al. 2017. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing. Earth System Science Data 9(1): 133-147. doi: http://dx.doi.org/10.5194/essd-9-133-2017.

Kim, Youngwook, et al. 2017. An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth System Science Data 9(1): 133-147. doi: http://dx.doi.org/10.5194/essd-9-133-2017.

Koziol, Conrad and Neil Arnold. 2017. Incorporating modelled subglacial hydrology into inversions for basal drag. The Cryosphere 11(6): 2783–2797. doi: http://dx.doi.org/10.5194/tc-11-2783-2017.

Koziol, Conrad, et al. 2017. Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland. Journal of Glaciology 63(239): 464-476. doi: http://dx.doi.org/10.1017/jog.2017.5.

Kulessa, Bernd, et al. 2017. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow. Science Advances 3(8). Art. #e1603071. doi: http://dx.doi.org/10.1126/sciadv.1603071.

Langen, Peter L., et al. 2017. Liquid Water Flow and Retention on the Greenland Ice Sheet in the Regional Climate Model HIRHAM5: Local and Large-Scale Impacts. Frontiers in Earth Science. doi: http://dx.doi.org/10.3389/feart.2016.00110.

Lee, Sang-Moo. Byung-Ju Sohn, and Seong-Joong Kim. 2017. Differentiating between first-year and multiyear sea ice in the Arctic using microwave-retrieved ice emissivities. Journal of Geophysical Research - Atmospheres 122(10): 5097–5112. doi: http://dx.doi.org/10.1002/2016JD026275.

Li, Tian, et al. 2017. The effect of seafloor topography in the Southern Ocean on tabular iceberg drifting and grounding. Science China-Earth Sciences 60(4): 697–706. doi: http://dx.doi.org/10.1007/s11430-016-9014-5.

Livingstone, Stephen J., et al. 2017. Paleofluvial and subglacial channel networks beneath Humboldt Glacier, Greenland. Geology 46(6): 551-554. doi: http://dx.doi.org/10.1130/G38860.1.

Moon, Twila, et al. 2017. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nature. doi: http://dx.doi.org/10.1038/s41561-017-0018-z.

Motyka, R., et al. 2017. Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland. Journal of Glaciology 63(238): 288-308. doi: http://dx.doi.org/10.1017/jog.2016.138.

Pegler, Samuel S. 2017. The dynamics of confined extensional flows. Journal of Fluid Mechanics 804: 24-57. doi: http://dx.doi.org/10.1017/jfm.2016.516.

Ramapriyan, H. K. and Kevin Murphy. 2017. Collaborations and Partnerships in NASA’s Earth Science Data Systems. Data Science Journal 16: 51. doi: http://dx.doi.org/10.5334/dsj-2017-051.

Rathmann, N. M., et al. 2017. Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland. Geophysical Research Letters 44(19): 9805–9814. doi: http://dx.doi.org/10.1002/2017GL074368.

Romanov, Peter. 2017. Global Multisensor Automated satellite-based Snow and Ice Mapping System (GMASI) for cryosphere monitoring. Remote Sensing of Environment 196: 42-55. doi: http://dx.doi.org/10.1016/j.rse.2017.04.023.

Sulak, Daniel J., et al. 2017. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Annals of Glaciology 58(74): 92-106. doi: http://dx.doi.org/10.1017/aog.2017.5.

Yang, Kang, and Laurence C. Smith. 2017. Internally drained catchments dominate supraglacial hydrology of the southwest Greenland Ice Sheet. Journal of Geophysical Research - Earth Surface 121(10): 1891-1910. doi: http://dx.doi.org/10.1002/2016JF003927.

Zekollari, Harry, et al. 2017. Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland). The Cryosphere 11(2): 805-825. doi: http://dx.doi.org/10.5194/tc-11-805-2017.

Zhu, Likai, Volker C. Radeloff, and Anthony R. Ives. 2017. Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sensing of Environment 191: 168-178. doi: http://dx.doi.org/10.1016/j.rse.2017.01.020.

2016

Ahlkrona, Josefin. 2016. Computational Ice Sheet Dynamics: error control and efficiency. . Ph. D. Uppsala Universitet.

Balco, Greg, et al. 2016. Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation Ice Stream, Antarctica. American Journal of Science 316(6): 542-577. doi: http://dx.doi.org/10.2475/06.2016.02.

Carr, Joanne Rachel. 2016. Ice-ocean-atmosphere interactions in the Arctic Seas. Ph. D. Durham University.

Carroll, D., et al. 2016. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophysical Research Letters 43(18): 9739-9748. doi: http://dx.doi.org/10.1002/2016GL070170.

Colgan, William, et al. 2016. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate. Geophysical Research Letters 43(15): 8091–8096. doi: http://dx.doi.org/10.1002/2016GL069688.

Cullather, Richard I., et al. 2016. A Characterization of Greenland Ice Sheet Surface Melt and Runoff in Contemporary Reanalyses and a Regional Climate Model. Frontiers in Earth Science 4. doi: http://dx.doi.org/10.3389/feart.2016.00010.

Du, Jinyang, J. S. Kimball, and L. A. Jones. 2016. Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E. IEEE Transactions on Geoscience and Remote Sensing 54(1): 597-608. doi: http://dx.doi.org/10.1109/TGRS.2015.2462758.

Fountain, Andrew G., Bryce Glenn, and Ted Scambos. 2016. The changing extent of the glaciers along the western Ross Sea, Antarctica. Geology 45(10): 927-930. doi: http://dx.doi.org/10.1130/G39240.1.

Karlstrom, Leif, and Kang Yang. 2016. Fluvial supraglacial landscape evolution on the Greenland Ice Sheet. Geophysical Research Letters 43(6): 2683–2692. doi: http://dx.doi.org/10.1002/2016GL067697.

Kim, Byeong-Hoon, et al. 2016. Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream. The Cryosphere 10(6): 2971–2980. doi: http://dx.doi.org/10.5194/tc-10-2971-2016.

Kim, Jieun, et al. 2016. Morphological Characteristics of the Ice Margins of Antarctic Ice Shelf and Outlet Glacier Extracted from ICESat Laser Altimetry Along-Track Profiles. Terrestrial, atmospheric, and oceanic sciences 27(4): 451-462. doi: http://dx.doi.org/10.3319/TAO.2015.12.24.01.

Laidre, Kristin L., et al. 2016. Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland. Biology Letters 12(10). Art. #20160457. doi: http://dx.doi.org/10.1098/rsbl.2016.0457.

Larsen, Signe Hillerup, et al. 2016. Increased mass loss and asynchronous behavior of marine-terminating outlet glaciers at Upernavik Isstrøm, NW Greenland. Journal of Geophysical Research - Earth Surface 121(2): 241-256. doi: http://dx.doi.org/10.1002/2015JF003507.

Mattingly, Kyle S., et al. 2016. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophysical Research Letters 43(17): 9250–9258. doi: http://dx.doi.org/10.1002/2016GL070424.

McMillan, Malcolm, et al. 2016. A high-resolution record of Greenland mass balance. Geophysical Research Letters 43(13): 7002-7010. doi: http://dx.doi.org/10.1002/2016GL069666.

Park, Hotaek, et al. 2016. Quantification of Warming Climate-Induced Changes in Terrestrial Arctic River Ice Thickness and Phenology. Journal of Climate 29(5): 1733–1754. doi: http://dx.doi.org/10.1175/JCLI-D-15-0569.1.

Park, Hotaek, Youngwook Kimb, and John S. Kimballb. 2016. Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sensing of Environment 175: 349–358. doi: http://dx.doi.org/10.1016/j.rse.2015.12.046.

Patton, H., et al. 2016. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution. Quaternary Science Reviews 148: 128-145. doi: http://dx.doi.org/10.1016/j.quascirev.2016.07.012.

Pittard, M. L., et al. 2016. Organization of ice flow by localized regions of elevated geothermal heat flux. Geophysical Research Letters 43(7): 3342-3350. doi: http://dx.doi.org/10.1002/2016GL068436.

Poinar, Kristin. 2016. The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet. . Ph. D. University of Washington.

Pope, Allen, et al. 2016. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. The Cryosphere 10(1): 15-27. doi: http://dx.doi.org/10.5194/tc-10-15-2016..

Pope, Allen. 2016. Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors. Earth and Space Science 3(4): 176-188. doi: http://dx.doi.org/10.1002/2015EA000125.

Rignot, E., et al. 2016. Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters 43(12): 6374–6382. doi: http://dx.doi.org/10.1002/2016GL068784.

Scheuchl, B., et al. 2016. Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data. Geophysical Research Letters 43(16): 8572–8579. doi: http://dx.doi.org/10.1002/2016GL069287.

Shapero, Daniel R., et al. 2016. Basal resistance for three of the largest Greenland outlet glaciers. Journal of Geophysical Research - Earth Surface 121(1): 168–180. doi: http://dx.doi.org/10.1002/2015JF003643.

Slater, Donald, et al. 2016. Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling. Journal of Glaciology 63(238): 309-323. doi: http://dx.doi.org/10.1017/jog.2016.139.

Straneo, Fiammetta, et al. 2016. Connecting the Greenland Ice Sheet and the ocean: a case study of Helheim Glacier and Sermilik Fjord. Oceanography 29(4): 35-45..

2015

Andersen, M. L., et al. 2015. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters 409: 89-95. doi: http://dx.doi.org/10.1016/j.epsl.2014.10.015.

Arthern, Robert J., Richard C. A. Hindmarsh, and C. Rosie Williams. 2015. Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations. Journal of Geophysical Research - Earth Surface 120(7): 1171-1188. doi: http://dx.doi.org/10.1002/2014JF003239.

Bingham, Robert G., et al. 2015. Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering. Journal of Geophysical Research - Earth Surface 120(4): 655-670. doi: http://dx.doi.org/10.1002/2014JF003291.

Carr, J. R., et al. 2015. Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. Journal of Glaciology 61(225): 137-150. doi: http://dx.doi.org/10.3189/2015JoG14J128.

Das, Indrani, et al. 2015. Extreme wind-ice interaction over Recovery Ice Stream, East Antarctica. Geophysical Research Letters 42(19): 8064-8071. doi: http://dx.doi.org/10.1002/2015GL065544.

Doyle, Samuel H., et al. 2015. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature Geoscience 8: 647-653. doi: http://dx.doi.org/10.1038/ngeo2482.

Du, Jinyang, et al. 2015. Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2. IEEE Transactions on Geoscience and Remote Sensing 53(5): 2520-2531. doi: http://dx.doi.org/10.1109/TGRS.2014.2361344.

Ely, Jeremy C., and Chris D. Clark. 2015. Flow-stripes and foliations of the Antarctic ice sheet. Journal of Maps. doi: http://dx.doi.org/10.1080/17445647.2015.1010617.

Fried, M. J. 2015. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophysical Research Letters 42(21): 9328-9336. doi: http://dx.doi.org/10.1002/2015GL065806.

Goldberg, D. N., et al. 2015. Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. The Cryosphere 9: 2429-2446. doi: http://dx.doi.org/10.5194/tc-9-2429-2015.

Jawak, Shridhar D., Tushar G. Bidawe, and Alvarinho J. Luis. 2015. A Review on Applications of Imaging Synthetic Aperture Radar with a Special Focus on Cryospheric Studies. Advances in Remote Sensing 44(2). Art. #57639. doi: http://dx.doi.org/10.4236/ars.2015.42014.

Lee, Sang-Moo, et al. 2015. Retrieving the refractive index, emissivity, and surface temperature of polar sea ice from 6.9GHz microwave measurements: A theoretical development. Journal of Geophysical Research - Atmospheres 120(6): 2293-2305. doi: http://dx.doi.org/10.1002/2014JD022481.

Palmer, Steven, Malcolm McMillan, and Mathieu Morlighem. 2015. Subglacial lake drainage detected beneath the Greenland ice sheet. Nature Communications 6. Art. #8408. doi: http://dx.doi.org/10.1038/ncomms9408.

Poinar, Kristin, et al. 2015. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophysical Research Letters 42(6): 1800-1807. doi: http://dx.doi.org/10.1002/2015GL063192.

Simonsen, Sebastian B., et al. 2015. Reconciled freshwater flux into the Godthåbsfjord system from satellite and airborne remote sensing. International Journal of Remote Sensing 36(1): 361-374. doi: http://dx.doi.org/10.1080/01431161.2014.995277.

Smith, E. C., et al. 2015. Mapping the ice-bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity. Journal of Geophysical Research - Earth Surface 120(9): 1881-1894. doi: http://dx.doi.org/10.1002/2015JF003587.

Voytenko, Denis, et al. 2015. Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. Journal of Glaciology 61(226): 301-308. doi: http://dx.doi.org/10.3189/2015JoG14J173.

Winter, Kate, et al. 2015. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications . Journal of Geophysical Research - Earth Surface 120(9): 1611-1625. doi: http://dx.doi.org/10.1002/2015JF003518.

Zhou, Yu, et al. 2015. Improving InSAR elevation models in Antarctica using laser altimetry, accounting for ice motion, orbital errors and atmospheric delays. Remote Sensing of Environment 162: 112-118. doi: http://dx.doi.org/10.1016/j.rse.2015.01.017.

2014

Alemohammad, Seyed H. Dara Entekhabi, and Dennis B. McLaughlin. 2014. Evaluation of Long-Term SSM/I-Based Precipitation Records over Land. Journal of Hydrometeorology 15(5): 2012–2029. doi: http://dx.doi.org/10.1175/JHM-D-13-0171.1.

Alemohammad, Seyed Hamed 2014. Characterization of Uncertainty in Remotely-Sensed Precipitation Estimates. : 156 p. Ph. D. MIT.

Bell, Robin E., et al. 2014. Deformation, warming and softening of Greenland’s ice by refreezing meltwater. Nature Geoscience 7(7): 497-502. doi: http://dx.doi.org/10.1038/ngeo2179.

Pages