Published Research

The following references cite studies that used IceBridge, MEaSUREs, MODIS data from NSIDC. Please contact User Services if you have a reference you would like to share on this page.

2017

Barry, Roger G. 2017. The Arctic Cryosphere in the Twenty-First Century. Geographical Review 107(1): 69-88. doi: http://dx.doi.org/10.1111/gere.12227.

Bell, Robin E., et al. 2017. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544: 344–348. doi: http://dx.doi.org/10.1038/nature22048.

Brown, Joel, Joel Harper, and Neil Humphrey. 2017. Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland. The Cryosphere 11(1): 669-679. doi: http://dx.doi.org/10.5194/tc-11-669-2017.

Brunt, Kelly M., et al. 2017. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland. The Cryosphere 11(2): 681-692. doi: http://dx.doi.org/10.5194/tc-11-681-2017.

Gilbert, A., et al. 2017. The projected demise of Barnes Ice Cap: Evidence of an unusually warm 21st century Arctic. Geophysical Research Letters 44(6): 2810-2816. doi: http://dx.doi.org/10.1002/2016GL072394.

Graham, Felicity S., et al. 2017. A high-resolution synthetic bed elevation grid of the Antarctic continent. Earth System Science Data 9(1): 267–279. doi: http://dx.doi.org/10.5194/essd-9-267-2017.

Gray, Laurence, et al. 2017. A revised calibration of the interferometric mode of the CryoSat-2 radar altimeter improves ice height and height change measurements in western Greenland . The Cryosphere 11(3): 1041-1058. doi: http://dx.doi.org/10.5194/tc-11-1041-2017.

Hill, Emily A., J. Rachel Carr, and Chris R. Stokes. 2017. A Review of Recent Changes in Major Marine-Terminating Outlet Glaciers in Northern Greenland. Frontiers in Earth Science 4(1): Art. #111. doi: http://dx.doi.org/10.3389/feart.2016.00111.

Jordan, T. A., F. Ferraccioli, and P. T. Leata. 2017. New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddell Sea Rift System of West Antarctica. Gondwana Research 42: 29-48. doi: http://dx.doi.org/10.1016/j.gr.2016.09.009.

Kim, Seung Hee, and Duk-jin Kim. 2017. Combined Usage of TanDEM-X and CryoSat-2 for Generating a High Resolution Digital Elevation Model of Fast Moving Ice Stream and Its Application in Grounding Line Estimation. Remote Sensing 9(2). Art. #176. doi: http://dx.doi.org/10.3390/rs9020176.

Koziol, Conrad, et al. 2017. Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland. Journal of Glaciology 63(239): 464-476. doi: http://dx.doi.org/10.1017/jog.2017.5.

Lecomte, Olivier. 2017. Influence of snow processes on sea ice : a model study. . Ph. D. Université Catholique de Louvain.

Mankoff, Kenneth D., et al. 2017. The past, present, and future viscous heat dissipation available for Greenland subglacial conduit formation . The Cryosphere 11(1): 303-317. doi: http://dx.doi.org/10.5194/tc-11-303-2017.

Mazur, A. K., A.K. Wåhlin, and A. Krężel. 2017. An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea. Remote Sensing of Environment 189: 67-83. doi: http://dx.doi.org/10.1016/j.rse.2016.11.013.

Mei, M Jeffrey, et al. 2017. Calving localization at Helheim Glacier using multiple local seismic stations. The Cryosphere 11(1): 609–618. doi: http://dx.doi.org/10.5194/tc-11-609-2017.

Meierbachtol, Toby W., et al. 2017. Mechanical forcing of water pressure in a hydraulically isolated reach beneath Western Greenland's ablation zone. Annals of Glaciology 57(2): 62-70. doi: http://dx.doi.org/10.1017/aog.2016.5.

Millan, Romain, et al. 2017. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data. Geophysical Research Letters 44(3): 1360-1368. doi: http://dx.doi.org/10.1002/2016GL072071.

Paxman, Guy J. G., et al. 2017. Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion and normal faulting. Journal of Geophysical Research - Solid Earth 122(3): 2390-2408. doi: http://dx.doi.org/10.1002/2016JB013841.

Schröder, Ludwig, et al. 2017. Validation of satellite altimetry by kinematic GNSS in central East Antarctica. The Cryosphere 11(3): 111-1130. doi: http://dx.doi.org/10.5194/tc-11-1111-2017, 2017.

Simonsen, Sebastian B., and Louise Sandberg Sørensen. 2017. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry. Remote Sensing of Environment 190: 207-216. doi: http://dx.doi.org/10.1016/j.rse.2016.12.012.

van Dam, T., et al. 2017. Using GPS and absolute gravity observations to separate the effects of present-day and Pleistocene ice-mass changes in South East Greenland. Earth and Planetary Letters 459: 127-135. doi: http://dx.doi.org/10.1016/j.epsl.2016.11.014.

Van Wychen, Wesley, et al. 2017. Variability in ice motion and dynamic discharge from Devon Ice Cap, Nunavut, Canada. Journal of Glaciology 63(239): 436-449. doi: http://dx.doi.org/10.1017/jog.2017.2.

Yan, Jie-Bang, et al. 2017. Airborne Measurements of Snow Thickness: Using ultrawide-band frequency-modulated-continuous-wave radars. IEEE Geoscience and Remote Sensing Magazine 5(2): 57-76. doi: http://dx.doi.org/10.1109/MGRS.2017.2663325.

Zhao, Chen, et al. 2017. Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates. Earth and Planetary Letters 473: 164-176. doi: http://dx.doi.org/10.1016/j.epsl.2017.06.002.

2016

Aitken, A. R. A., et al. 2016. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533(7603): 385–389. doi: http://dx.doi.org/10.1038/nature17447.

Aitken, A. R., et al. 2016. The Australo-Antarctic Columbia to Gondwana transition. Gondwana Research 29(1): 136–152. doi: http://dx.doi.org/10.1016/j.gr.2014.10.019.

Alexander, Patrick M., et al. 2016. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012). The Cryosphere 10(3): 1259–1277. doi: http://dx.doi.org/10.5194/tc-10-1259-2016.

Alley, Karen E., et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience 9(4): 290-293. doi: http://dx.doi.org/10.1038/ngeo2675.

Banda, Francesco, and Stefano Tebaldini. 2016. Texture-Free Absolute DEM Retrieval From Opposite-Side Multibaseline InSAR Data. IEEE Geoscience and Remote Sensing Letters 13(1): 43-47. doi: http://dx.doi.org/10.1109/LGRS.2015.2494684.

Barthélemy, Antoine, Thierry Fichefet, and Hugues Goosse. 2016. Spatial heterogeneity of ocean surface boundary conditions under sea ice. Ocean Modelling 102: 82–98. doi: http://dx.doi.org/10.1016/j.ocemod.2016.05.003.

Brinkerhoff, Douglas J., Andy Aschwanden, and Martin Truffer. 2016. Bayesian Inference of Subglacial Topography Using Mass Conservation. Frontiers in Earth Science 4. doi: http://dx.doi.org/10.3389/feart.2016.00008.

Cavitte, Marie G. P., et al. 2016. Deep radiostratigraphy of the East Antarctic plateau: connecting the Dome C and Vostok ice core sites. Journal of Glaciology 62(232): 323- 334. doi: http://dx.doi.org/10.1017/jog.2016.11.

Christianson, Knut, et al. 2016. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters 43(20): 10,817–10,825. doi: http://dx.doi.org/10.1002/2016GL070500.

Christie, Frazer D. W., et al. 2016. Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica. Geophysical Research Letters 43(11): 5741-5749. doi: http://dx.doi.org/10.1002/2016GL068972.

Colgan, William, et al. 2016. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate. Geophysical Research Letters 43(15): 8091–8096. doi: http://dx.doi.org/10.1002/2016GL069688.

Cowtown, Tom, et al. 2016. Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems. Journal of Glaciology 62(233): 451-466. doi: http://dx.doi.org/10.1017/jog.2016.36.

Enderlin, Ellyn M., et al. 2016. An Empirical Approach for Estimating Stress-Coupling Lengths for Marine-Terminating Glaciers. Frontiers In Earth Science 4. Art. #104. doi: http://dx.doi.org/10.3389/feart.2016.00104.

Feng, B., et al. 2016. Firn Stratigraphic Genesis in Early Spring: Evidence From Airborne Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6): 2429-2435. doi: http://dx.doi.org/10.1109/JSTARS.2016.2546798.

Floricioiu, D., et al. 2016. The recovery ice stream: Synergy of satellite and airborne remote sensing for flow dynamics. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing : 7098-7100. doi: http://dx.doi.org/10.1109/IGARSS.2016.7730852.

Frederick, Bruce C., et al. 2016. Distribution of subglacial sediments across the Wilkes Subglacial Basin, East Antarctica. Journal of Geophysical Research - Earth Surface 121(4): 790-813. doi: http://dx.doi.org/10.1002/2015JF003760.

Gourlet, P., et al. 2016. Ice thickness of the northern half of the Patagonia Icefields of South America from high-resolution airborne gravity surveys. Geophysical Research Letters 43(1): 241–249. doi: http://dx.doi.org/10.1002/2015GL066728.

Gowan, Evan J., et al. 2016. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geoscientific Model Development 9(5): 1673–1682. doi: http://dx.doi.org/10.5194/gmd-9-1673-2016.

Guerreiro, Kévin, et al. 2016. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sensing of Environment 186: 339–349. doi: http://dx.doi.org/10.1016/j.rse.2016.07.013.

Hansen, Samantha E., et al. 2016. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for tectonic origins. Journal of Geophysical Research - Solid Earth 121(2): 812–825. doi: http://dx.doi.org/10.1002/ 2015JB012325.

Harpold, Robert, et al. 2016. Intra-scan intersection method for the determination of pointing biases of an airborne altimeter. International Journal of Remote Sensing 37(3): 648-668. doi: http://dx.doi.org/10.1080/01431161.2015.1137989.

Hogg, Anna E., et al. 2016. Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. Journal of Glaciology 62(236): 1104-1114. doi: http://dx.doi.org/10.1017/jog.2016.83.

Huang, Min, et al. 2016. Temporal and spatial variability of daytime land surface temperature in Houston: Comparing DISCOVER-AQ aircraft observations with the WRF model and satellites. Journal of Geophysical Research - Atmospheres 121(1): 185-195. doi: http://dx.doi.org/10.1002/2015JD023996.

Ignéczi, Á., et al. 2016. Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century. Geophysical Research Letters 43(18): 9729–9738. doi: http://dx.doi.org/10.1002/2016GL070338.

Khan, Shfaqat A., et al. 2016. Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances 2(9). Art. #e1600931. doi: http://dx.doi.org/10.1126/sciadv.e1600931.

Khazendar, Ala, et al. 2016. Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nature Communications 7. Art. #13243. doi: http://dx.doi.org/10.1038/ncomms13243.

Kienholz, C., et al. 2016. Geodetic mass balance of surge-type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement. Journal of Geophysical Research - Earth Surface 121(12): 2358-2380. doi: http://dx.doi.org/10.1002/2016JF003883.

Koenig, Lora S., et al. 2016. Annual Greenland accumulation rates (2009–2012) from airborne snow radar. Cryosphere 10: 1739–1752. doi: http://dx.doi.org/10.5194/tc-10-1739-2016.

Korsgaard, Niels J., et al. 2016. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Scientific Data 3. Art. #160032. doi: http://dx.doi.org/10.1038/sdata.2016.32.

Levinson, Joanna F., et al. 2016. The Impact of DEM Resolution on Relocating Radar Altimetry Data Over Ice Sheets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(7): 3158-3163. doi: http://dx.doi.org/10.1109/JSTARS.2016.2587684.

MacGregor, Joseph A., et al. 2016. A synthesis of the basal thermal state of the Greenland Ice Sheet. Journal of Geophysical Research - Earth Surface 121(7): 1328-1350. doi: http://dx.doi.org/10.1002/2015JF003803.

Maritati, A., et al. 2016. The tectonic development and erosion of the Knox Subglacial Sedimentary Basin, East Antarctica. Geophysical Research Letters 43(20): 10,728–10,737. doi: http://dx.doi.org/10.1002/2016GL071063.

McMillan, Malcolm, et al. 2016. A high-resolution record of Greenland mass balance. Geophysical Research Letters 43(13): 7002-7010. doi: http://dx.doi.org/10.1002/2016GL069666.

Miège, Clément, et al. 2016. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. Journal of Geophysical Research - Earth Surface 121(12): 2381–2398. doi: http://dx.doi.org/10.1002/2016JF003869.

Muresan, Ioana S., et al. 2016. Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ. The Cryosphere 10(2): 597-611. doi: http://dx.doi.org/10.5194/tc-10-597-2016.

Muto, Atsuhiro, et al. 2016. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: New results. Earth and Planetary Letters 433: 63-75. doi: http://dx.doi.org/10.1016/j.epsl.2015.10.037.

Nilsson, Johan, et al. 2016. Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet. The Cryosphere 10(6): 2953-2969. doi: http://dx.doi.org/10.5194/tc-10-2953-2016.

Petty, Alek A., et al. 2016. Characterizing Arctic sea ice topography using high-resolution IceBridge data. Cryosphere 10(3): 1161-1179. doi: http://dx.doi.org/10.5194/tc-10-1161-2016.

Pitcher, Lincoln, et al. 2016. CryoSheds: a GIS modeling framework for delineating land-ice watersheds for the Greenland Ice Sheet. GIScience & Remote Sensing 53(6): 707-722. doi: http://dx.doi.org/10.1080/15481603.2016.1230084.

Schaffer, Janin, et al. 2016. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data 8(2): 543-557. doi: http://dx.doi.org/10.5194/essd-8-543-2016.

Schlegel, N.-J., et al. 2016. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003–2012). The Cryosphere 10(5): 1965-1989. doi: http://dx.doi.org/10.5194/tc-10-1965-2016.

Stevens, Laura, et al. 2016. Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. Cryosphere 10: 413-42. doi: http://dx.doi.org/10.5194/tc-10-417-2016.

Tschudi, Mark, Julienne C. Stroeve, and J. Scott Stewart. 2016. Relating the Age of Arctic Sea Ice to its Thickness, as Measured during NASA’s ICESat and IceBridge Campaign. Remote Sensing 8(6). Art. #457. doi: http://dx.doi.org/10.3390/rs8060457.

Vance, Tessa R., et al. 2016. Optimal site selection for a high-resolution ice core record in East Antarctica. Climate of the Past 12(3): 595-610. doi: http://dx.doi.org/10.5194/cp-12-595-2016.

Wang, Xianwei, et al. 2016. An improved approach of total freeboard retrieval with IceBridge Airborne Topographic Mapper (ATM) elevation and Digital Mapping System (DMS) images. Remote Sensing of Environment 184: 582–594. doi: http://dx.doi.org/10.1016/j.rse.2016.08.002.

Wang, Xuanji, et al. 2016. Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data. Remote Sensing 8(9). Art. #713. doi: http://dx.doi.org/10.3390/rs8090713.

Xie, Jiping, et al. 2016. Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system. The Cryosphere 10(6): 2745-2761. doi: http://dx.doi.org/10.5194/tc-10-2745-2016.

Yi, Donghui, et al. 2016. Antarctic sea-ice freeboard and estimated thickness from NASA's ICESat and IceBridge observations. Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. Piscataway, NJ: Institute of Electrical and Electronics Engineers ( IEEE ), 7682-7685. doi: http://dx.doi.org/10.1109/IGARSS.2016.7731003.

Young, Duncan A., et al. 2016. The distribution of basal water between Antarctic subglacial lakes from radar sounding. Philosophical Transactions of the Royal Society, A-Mathematical…. 374. Art. #20140297. doi: http://dx.doi.org/10.1098/rsta.2014.0297.

Zhao, X., et al. 2016. A case study of a transported bromine explosion event in the Canadian high arctic. Journal of Geophysical Research - Atmospheres 121(1): 457-477. doi: http://dx.doi.org/10.1002/2015JD023711.

2015

Abraham, Carsten, et al. 2015. Effects of subgrid-scale snow thickness variability on radiative transfer in sea ice. Journal of Geophysical Research - Oceans 120(8): 5597-5614. doi: http://dx.doi.org/10.1002/2015JC010741.

Andersen, M. L., et al. 2015. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters 409: 89-95. doi: http://dx.doi.org/10.1016/j.epsl.2014.10.015.

Armitage, Thomas W. K., and Andy L. Ridout. 2015. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge. Geophysical Research Letters 42(16): 6724-6731. doi: http://dx.doi.org/10.1002/2015GL064823.

Banda, F., and S. Tebaldini. 2015. Texture-free absolute DEM retrieval from opposite-side multi-baseline InSAR data. IGARSS 2015. Piscataway, NJ: Institute of Electrical and Electronics Engineers ( IEEE ), 4085-4088. doi: http://dx.doi.org/10.1109/IGARSS.2015.7326723.

Blanchard-Wrigglesworth, E., et al. 2015. Snow cover on Arctic sea ice in observations and an Earth System Model. Geophysical Research Letters 42(23): 10342-10348. doi: http://dx.doi.org/10.1002/2015GL066049.

Boghosian, Alexandra, et al. 2015. Resolving bathymetry from airborne gravity along Greenland fjords. Journal of Geophysical Research - Solid Earth 120(12): 8516-8533. doi: http://dx.doi.org/10.1002/2015JB012129.

Boisvert, L. N., et al. 2015. Verification of air/surface humidity differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic. Journal of Geophysical Research - Atmospheres 120(3): 945-963. doi: http://dx.doi.org/10.1002/2014JD021666.

Bradley, Alice C., et al. 2015. Air-Deployed Microbuoy Measurement of Temperatures in the Marginal Ice Zone Upper Ocean during the MIZOPEX Campaign. Journal of Atmospheric and Oceanic Technology 32(5): 1058-1070. doi: http://dx.doi.org/10.1175/JTECH-D-14-00209.1.

Cochran, James R., Kirsty J. Tinto, and Robin E. Bell. 2015. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica. Geochemistry Geophysics Geosystems 16(5): 1421-1438. doi: http://dx.doi.org/10.1002/2014GC005570.

Das, Indrani, et al. 2015. Extreme wind-ice interaction over Recovery Ice Stream, East Antarctica. Geophysical Research Letters 42(19): 8064-8071. doi: http://dx.doi.org/10.1002/2015GL065544.

de la Peña, S. 2015. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming. The Cryosphere 9: 1203-1211. doi: http://dx.doi.org/10.5194/tc-9-1203-2015.

de Paul Onana, V., et al. 2015. A Semiautomated Multilayer Picking Algorithm for Ice-Sheet Radar Echograms Applied to Ground-Based Near-Surface Data. IEEE Transactions on Geoscience and Remote Sensing 53(1): 51-69. doi: http://dx.doi.org/10.1109/TGRS.2014.2318208.

Farrell, Sinéad L., et al. 2015. Sea-ice freeboard retrieval using digital photon-counting laser altimetry. Annals of Glaciology 56(69): 167-174. doi: http://dx.doi.org/10.3189/2015AoG69A686.

Frederick, Bruce Child 2015. Submarine Sedimentary Basin Analyses for the Aurora and Wilkes Subglacial Basins and the Sabrina Coast Continental Shelf, East Antarctica. . Ph. D. University of Texas.

Goldberg, D. N., et al. 2015. Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. The Cryosphere 9: 2429-2446. doi: http://dx.doi.org/10.5194/tc-9-2429-2015.

Gray, L., et al. 2015. CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps. The Cryosphere 9: 1895-1913. doi: http://dx.doi.org/10.5194/tc-9-1895-2015.

Harrington, Joel A., Neil F. Humphrey, and Joel T. Harper 2015. Temperature distribution and thermal anomalies along a flowline of the Greenland ice sheet. Annals of Glaciology 56(70): 98-104. doi: http://dx.doi.org/10.3189/2015AoG70A945.

Holland, P. R., et al. 2015. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. The Cryosphere 9(3): 1005-1024. doi: http://dx.doi.org/10.5194/tc-9-1005-2015.

Holt, Benjamin, et al. 2015. Snow depth on Arctic sea ice derived from radar: In situ comparisons and time series analysis. Journal of Geophysical Research - Oceans 120(6): 4260-4287. doi: http://dx.doi.org/10.1002/2015JC010815.

Howat, I. M., et al. 2015. Brief Communication: Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet. The Cryosphere: 03-108. 9(1). doi: http://dx.doi.org/10.5194/tc-9-103-2015.

Huss, Matthias, and Regine Hock. 2015. A new model for global glacier change and sea-level rise. Frontiers in Earth Science 3. Art. #54. doi: http://dx.doi.org/10.3389/feart.2015.00054.

Jamieson, Stewart S. R., et al. 2015. An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica. Geology 44(2): 87-90. doi: http://dx.doi.org/10.1130/G37220.1.

Kaleschke, L., et al. 2015. Improved retrieval of sea ice thickness from SMOS and CryoSat-2. IGARSS 2015. Piscataway, NJ: Institute of Electrical and Electronics Engineers ( IEEE ), 5232-5235. doi: http://dx.doi.org/10.1109/IGARSS.2015.7327014.

Kern, S., et al. 2015. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. The Cryosphere 9(1): 37-52. doi: http://dx.doi.org/10.5194/tc-9-37-2015.

Khazendar, Ala, et al. 2015. The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers . Earth and Planetary Letters 419: 199-210. doi: http://dx.doi.org/10.1016/j.epsl.2015.03.014.

Kim, Jin-Woo, et al. 2015. Disintegration and acceleration of Thwaites Ice Shelf on the Amundsen Sea revealed from remote sensing measurements. GIScience & Remote Sensing 52(4): 498-509. doi: http://dx.doi.org/10.1080/15481603.2015.1041766.

Pages