• On Wednesday, March 20, from 9:30 a.m. to 12:00 p.m. (US Mountain Time), the following data collections may not be available due to planned system maintenance: ASO, AMSR Unified, AMSR-E, Aquarius, High Mountain Asia, IceBridge, ICESat/GLAS, ICESat-2, LVIS, MEaSUREs, MODIS, Nimbus, SMAP, SnowEx, SSM/I-SSMIS and VIIRS.

GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights (HDF5), Version 33
Data set id:
GLAH08
DOI: 10.5067/ICESAT/GLAS/DATA201
This is the most recent version of these data.
Version Summary
For information about Version 33, visit the ICESat/GLAS Version History page

Overview

GLAH08 Level-2 planetary boundary layer (PBL) and elevated aerosol layer heights data contains PBL heights, ground detection heights, and top and bottom heights of elevated aerosols from -1.5 km to 20.5 km (4 sec sampling rate) and from 20.5 km to 41 km (20 sec sampling rate). Each data granule has an associated browse product.
Parameter(s):
AEROSOL PARTICLE PROPERTIESPLANETARY BOUNDARY LAYER HEIGHT
Platform(s):
ICESat
Sensor(s):
ALTIMETERS, CD, GLAS, GPS, GPS Receiver, LA, PC
Data Format(s):
HDF
Temporal Coverage:
20 February 2003 to 11 October 2009
Temporal Resolution:
  • 1288 minute
Spatial Resolution:
  • 60 m to 70 m
  • 60 m to 70 m
Spatial Reference System(s):
ITRF2008
EPSG:5332
Spatial Coverage:
N:
86
S:
-86
E:
180
W:
-180
Blue outlined yellow areas on the map below indicate the spatial coverage for this data set.

Data Access & Tools

A free NASA Earthdata Login account is required to access these data. Learn More

Help Articles

General Questions & FAQs

This article covers frequently asked questions about the NASA NSIDC DAAC's Earthdata cloud migration project and what it means to data users.
Analysis of altimetric data acquired by the GLAS instrument requires accurate determination of the laser spot location on the Earth's surface (ice, land, water, clouds) or geolocation of the laser spot.
This short article describes the customization services available for ICESat/GLAS data using Earthdata Search

How to Articles

Many NSIDC DAAC data sets can be accessed using the NSIDC DAAC's Data Access Tool. This tool provides the ability to search and filter data with spatial and temporal constraints using a map-based interface.Users have the option to
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
NASA Earthdata Search is a map-based web interface for discovering and ordering data using spatial and temporal filters. This article explains how to search for ICESat/GLAS data based on spatial and temporal constraints.
The HDF Group has example code for access and visualization of MODIS, GLAS HDF5, AMSR-E, and NISE data in MATLAB, IDL, Python, and NCL.
This guide will provide an overview of the altimetry measurements and data sets across the missions, as well as a guide for accessing the data through NASA Earthdata Search and programmatically using an Application Programming Interface (API).
The NASA Earthdata Cloud is the NASA cloud-based archive of Earth observations. It is hosted by Amazon Web Services (AWS). Learn how to find and access NSIDC DAAC data directly in the cloud.
All data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) can be accessed directly from our HTTPS file system, using wget or curl. Basic command line instructions are provided in the article below. 
NASA Earthdata Search is a map-based interface where a user can search for Earth science data, filter results based on spatial and temporal constraints, and order data with customizations including re-formatting, re-projecting, and spatial and parameter subsetting.
HDFView https://support.hdfgroup.org/products/java/hdfview/ When you first open HDFView, the HDFView window appears with an empty tree and data panel.