The Multisensor Analyzed Sea Ice Extent – Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the Northern Hemisphere and 16 Arctic regions in a polar stereographic projection. Products include an ASCII text file of sea ice extent values in square km over the entire Northern Hemisphere with 16 separate Arctic regions identified, time series plots of the 16 regions, and image files that visually show where the sea ice is. The MASIE-NH imagery are provided at a nominal 4 km resolution. The input data comes from the 4 km Interactive Multisensor Snow and Ice Mapping System (IMS) snow and ice product produced by the National Ice Center (NIC). NIC utilizes visible imagery, passive microwave data, and NIC weekly analysis products to create their data product. The MASIE-NH products are distributed in a number of formats including ASCII text, GeoTIFF, PNG, shapefiles, and Google Earth files and are available for the previous four weeks (28 days). The most recent days worth of imagery plus the ASCII text data file are provided via the MASIE Web site. An archive of the previous four weeks of imagery can be obtained via FTP.
Note: MASIE may look like several other sea ice products distributed at NSIDC and elsewhere, but its source data and intended uses are different. If intended and appropriate uses of the data are not clear after reading the documentation, please contact NSIDC User Services.
The following example shows how to cite the use of this data set in a publication. For more information, see our Use and Copyright Web page.
The following example shows how to cite the use of this data set in a publication. List the principal investigators, year of data set release, data set title and version number, dates of the data you used (for example, March to June 2004), publisher: NSIDC, and digital media.
National Ice Center (NIC) and NSIDC. 2010. Multisensor Analyzed Sea Ice Extent – Northern Hemisphere. Developed by F. Fetterer, M. Savoie, S. Helfrich, and P. Clemente-Colón. Boulder, Colorado USA: National Snow and Ice Data Center. http://dx.doi.org/10.7265/N5GT5K3K
To credit MASIE images, please use the following: Credit: NSIDC/NIC MASIE product.
| Category | Description |
|---|---|
| Data format | Data Files: Comma Separated Value (CSV) ASCII Text (.csv) Daily Georeferenced Images: GeoTIFF (.tif) Daily Browse Images: PNG (.png) Daily Sea Ice Extent Boundary: Shapefiles (.shp) Time Series Plots: PNG (.png) Google Earth Files: KMZ (.kmz) Ancillary files: NetCDF (.nc), GeoTIFF (.tif), PNG (.png), and Excel (.xls) |
| Spatial coverage and resolution | Southernmost latitude: 0° N Northernmost latitude: 90° N Westernmost longitude: 180° W Easternmost longitude: 180° E Resolution: 4 km The MASIE product is also divided up into 16 smaller regions located in and around the Arctic. See Table 1 for a list of these 16 regions. |
| Temporal coverage and resolution | Previous 4 weeks, daily resolution |
| File naming convention | Data Files: masie_extent_sqkm.csv Daily Georeferenced Images: masie_type_rxx_vzz_yyyyddd_4km.tif Daily Browse Images: masie_all_rxx_vzz_yyyyddd_4km.png Daily Sea Ice Extent Boundary: masie_ice_r00_vzz_yyyyddd_4km.shp Time Series Plots: rxx_region_name_ts.png Google Earth Files: masie_ice_rxx_vzz_yyyyddd.kmz Ancillary Files: masiemask_ims4km.nc, landmask_rxx.tif, landmask_rxx.png, and MASIE_regions_polygon_vertices.xls |
| File size | Data Files: 16 KB Daily Georeferenced Images: 128 KB - 37 MB Daily Browse Images: 16 KB - 768 KB Daily Sea Ice Extent Boundary: 32 KB (zipped) Time Series Plots: 53 KB - 77 KB Google Earth Files: 98 KB - 130 KB Ancillary Files: 7 KB - 504 MB |
| Parameters | Sea Ice Extent Sea Ice Edge/Boundary |
| Metadata access | View metadata |
| Data access | Most Recent: MASIE Web site Previous 4 weeks: FTP |
NSIDC User Services
National Snow and Ice Data Center
CIRES, 449 UCB
University of Colorado
Boulder, CO 80309-0449 USA
phone: +1 303.492.6199
fax: +1 303.492.2468
form: Contact NSIDC User Services
e-mail: nsidc@nsidc.org
The input data set for the MASIE-NH product is the 4 km IMS snow and ice product produced by NIC. This product is archived at NSIDC in the IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km and 24 km Resolution data set.
NIC constructs the sea ice component of this data set using satellite data, but they also draw on information from NIC operational charts and other sources. NIC operational charts are produced on a weekly to biweekly basis for Arctic and Antarctic waters. These charts use a wide variety of data sources and are constructed by analysts trained in remote sensing imagery interpretation and sea ice climatology. NIC is a multi-agency operational center directed by the United States Navy, the National Oceanic and Atmospheric Administration (NOAA), and the United States Coast Guard (USCG).
The IMS product was designed to aid numerical weather prediction by providing a proxy boundary layer albedo field. The IMS ice and snow extent fields are produced with fixed standards and quantify areal coverage with set metrics. In contrast, operational ice charts meet the needs of those going into the ice and provide general situational awareness, such as the extent of fast ice or of ice of any concentration greater than zero percent. Chart production is more flexible than is IMS production in order to meet changing user needs and source data availability.
Both NIC IMS and NIC chart products usually represent sea ice more accurately than do products based on single-sensor satellite data alone. For any given region or day, a user who wants the most accurate analysis of ice edge position and concentration should use products from an operational ice service such as NIC.
While operational analyses are usually the most accurate and timely representation of sea ice, they have errors and biases that change over time. If one is interested in long-term trends in sea ice or how it responds to changing climate forcing, generally, it is best not to use an operational product, but rather one that is consistently produced and retroactively quality controlled. The NSIDC Sea Ice Index monthly ice extent, and the satellite passive microwave data sets upon which it is based, is one example. The Sea Ice Index gives a daily image of extent as well as monthly products. However, these daily images are not meant to be used for climate studies or for inferring anything longer than seasonal trends. Satellite data are not quality controlled quickly enough; and for reasons explained in the Sea Ice Index documentation, the daily ice edge position can be off by tens of kilometers or more from the ice edge that an analyst would draw. Reasons include known errors in thin ice detection, bias in summertime concentration estimates, and the relative compactness of the marginal ice zone. See Partington et al. (2003) for an assessment of operational versus satellite-derived ice concentration.
MASIE was developed by NSIDC and NIC to fill a need for an intermediate type of product; one between operational charts and the passive microwave based Sea Ice Index. MASIE is based on the NIC IMS product and gives a daily picture of ice extent that is easy to use and available in several formats. Daily values for hemisphere-wide and regional ice extent are made available in a file that is a rolling archive of the most recent four weeks of extent values. MASIE gives a quick picture of ice extent that is more accurate than the daily Sea Ice Index product and allows users to compare day-to-day changes in extent values. However, in general, it would not be appropriate to compare a recent MASIE extent value to one more than a few weeks old because the data sources and analysts NIC uses may have changed.
In addition to IMS, NIC has two other operational products that were considered as potential source data for MASIE. They are the weekly or biweekly ice charts and a daily ice edge product. The ice charts usually show the ice edge region in great detail but are unsuitable for MASIE because they are not a daily product. The daily ice edge product is used to warn navigators and others in arctic seas where ice exists or is likely to form at any concentration. The daily ice edge product edge is always more conservative, or outboard, of the IMS edge. Ice charts and ice edge products have marine transportation interests as primary users, while the IMS product is designed primarily for modelers.
The IMS product is an intermediate product. It is produced relatively consistently when compared to chart and edge products, but also benefits from the same careful manual analysis that is used for those products, which is why it was chosen as the input for the MASIE product. This article, written in 2006, gives a brief history of NIC's operations that will help you understand the setting in which its products are created: The Evolution of Operations at the U. S. National Ice Center: From Paper to Pixel.
The most recent data (generally the previous day) can be obtained from the MASIE Web site. Archives of the previous four weeks (28 days) of data are available via FTP. Gaps in the data record may occur.
Note: MAISE is based on the IMS product. The IMS product is considered operational, but NIC does not guarantee availability or timely delivery of data via the NIC Web server, and NSIDC does not guarantee availability of the IMS product or of the MASIE product via the NSIDC Web server. These servers should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. Users with real-time operational needs should visit the NIC Web site and contact the NIC Liaison to request access to the operational server.
Sea ice extent, that is, the area covered by sea ice in square km, and sea ice edge are the parameters of this product.
The input IMS gridded product contains cells that are binary; they are either set to ice or not ice. MASIE ice extent values are obtained by counting IMS product ice cells and multiplying by their area. Sea ice extent is synonymous with sea ice area for this product, but NSIDC uses the term extent. The All about Sea Ice: Terminology Web page explains how the terms sea ice area, sea ice concentration, and sea ice extent are related and used in many NSIDC data sets.
This data product covers the entire Northern Hemisphere with a nominal spatial resolution of 4 km and the following spatial coordinates:
Southernmost latitude: 0° N
Northernmost latitude: 90° N
Westernmost longitude: 180° W
Easternmost longitude: 180° E
The MASIE product is also divided up into 16 smaller regions located in and around the Arctic. See Table 1 for a list of these 16 regions. For specific lat/lon vertices of the regions, see the file MASIE_regions_polygon_vertices.xls.
The temporal coverage of this product is for the last four weeks (28 days) at a daily resolution.
The MASIE products are provided in a polar stereographic projection with the WGS 1984 datum and a standard parallel at 60° N with a nominal grid size of 4 km. For complete details on the specifics of this projection, see the polar_stereographic variable in the netCDF file masiemask_ims4km.nc.
The MASIE-NH product is distributed in a number of formats. See each section below for the format of that specific product:
The data values are provided in one single CSV ASCII text file (.csv) named masie_extent_sqkm.csv. This file contains daily sea ice extent values in sq km going back four weeks (28 days) and contains 18 columns. The first column is the date of the data value in the 4-digit year, 3-digit day of year format (yyyyddd); the last 17 columns are the regions. See Table 1 for region names. The file is 16 KB in size and is updated daily with the oldest day's record being removed and the newest record added.
Sample Data File
The following is the first seven rows and seven columns of masie_extent_sqkm.csv created on 09 November 2010.
MASIE NSIDC/NIC Sea Ice Product G02186 - Daily Ice Extent by Region in Square Kilometers yyyyddd,(0) Northern_Hemisphere, (1) Beaufort_Sea, (2) Chukchi_Sea, (3) East_Siberian_Sea, (4) Laptev_Sea, (5) Kara_Sea, 2010283, 6097384.75, 725802.23, 276512.82, 535245.53, 325942.76, 160667.28, 2010284, 6377051.74, 754403.69, 303362.38, 572381.44, 366616.07, 185168.46, 2010285, 6442208.46, 776393.09, 316489.89, 573868.90, 372137.54, 185168.46, 2010286, 6663079.49, 789444.60, 320156.15, 585474.24, 419904.30, 336664.85, 2010287, 6732130.10, 800888.26, 300392.82, 574780.20, 477135.95, 342397.58,
The daily georeferenced images are provided in GeoTIFF format. There are two different types of files. One version contains all surface type classifications for sea ice, land, coastline, lake, ocean, and missing; the other version is a binary sea ice/not sea ice file. The binary sea ice/not sea ice GeoTIFF image files are provided to aid users who may want to layer ice in other applications. See Table 2 for byte values and RGB color values of the classifications. For the previous four weeks, there is a daily file for each of the 17 regions: Northern Hemisphere-wide plus 16 regional files. See Table 1 for a list of regions, their size, and their byte values. The size of the files ranges from 128 KB to 37 MB depending on the region. The files are updated daily if data are available. For specific lat/lon vertices of the 16 regions, see the file MASIE_regions_polygon_vertices.xls.
| Region No. | Region Name | Size (pixels) | Byte Value |
|---|---|---|---|
| 0 | Northern Hemisphere | 6144 x 6144 | N/A |
| 1 | Beaufort Sea | 497 x 449 | 1 |
| 2 | Chukchi Sea | 416 x 297 | 2 |
| 3 | East Siberian Sea | 476 x 457 | 3 |
| 4 | Laptev Sea | 524 x 513 | 4 |
| 5 | Kara Sea | 415 x 523 | 5 |
| 6 | Barents Sea | 612 x 533 | 6 |
| 7 | Greenland Sea | 582 x 850 | 7 |
| 8 | Baffin Bay/Gulf of St. Lawrence | 807 x 1257 | 8 |
| 9 | Canadian Archipelago | 531 x 564 | 9 |
| 10 | Hudson Bay | 591 x 665 | 10 |
| 11 | Central Arctic | 573 x 631 | 11 |
| 12 | Bering Sea | 423 x 932 | 12 |
| 13 | Baltic Sea | 530 x 420 | 13 |
| 14 | Sea of Okhotsk | 527 x 1079 | 14 |
| 15 | Yellow Sea | 339 x 373 | 15 |
| 16 | Cook Inlet | 382 x 304 | 16 |
| Classification | Byte Value | Color (name/[RGB]) |
|---|---|---|
| missing/not sea ice | 0 | light grey [193, 190, 207] |
| ocean | 1 | light blue [145, 215, 249] |
| land | 2 | slate green [162, 186, 164] |
| sea ice | 3 | off white [254,254,254] |
| coast line | 4 | dark forest green [41, 77, 48] |
| lake | 5 | dark blue [50, 80, 120] |
| border of region images | 6 | dark grey [71, 68, 68] |
The GeoTIFF files are named according to the following convention and as described in Table 5:
masie_type_rxx_vzz_yyyyddd_4km.tif
Sample Images
Figures 1a and 1b show an example of the GeoTIFF files.
![]() |
![]() |
| Figure 1a. Example of GeoTIFF for All Surface Types for 08 November 2010 for Region 2 - Chukchi Sea (masie_all_r02_v01_2010312_4km.tif) | Figure 1b. Example of GeoTIFF for Binary Sea Ice/Not Sea Ice Surfaces for 08 November 2010 for Region 2 - Chukchi Sea (masie_ice_r02_v01_2010312_4km.tif) |
The daily browse image files are provided in PNG format. The browse images are distributed to give a quick view of ice conditions and have a lat/lon graticule on them unlike the GeoTIFF files. They are provided for the previous four weeks for the all surfaces classification (sea ice, land, coastline, lake, ocean, and missing) for the entire Northern Hemisphere, the 16 MASIE regions, and a zoomed in image of the Northern Hemisphere focused on the Arctic. See Table 1 for a list of regions. The size of the files ranges from 16 KB to 768 KB depending on the region. The files are updated daily.
The browse images are named according to the following convention and as described in Table 5:
masie_all_rxx_vzz_yyyyddd_4km.png
Sample Image
Figure 2 shows an example of a PNG file.
![]() |
| Figure 2. Sample PNG image for All Surface Types for 08 November 2010 for Region 2 - Chukchi Sea (masie_all_r02_v01_2010312_4km.png) |
The daily sea ice extent boundaries are provided as polygons in shapefiles (.shp). These are distributed for the entire Northern Hemisphere only; no region shapefiles are provided. Each file shows the outline of the sea ice edge for a particular day for the previous four weeks (28 days); no land or other surfaces are identified. Each daily shapefile and associated ancillary files (.dbf, .prj, and .shx) are zipped together in one file for easier downloading. The size of each zipped file is 32 KB, and the files are updated daily.
The shapefiles are named according to the following convention and as described in Table 5:
masie_ice_r00_vzz_yyyyddd_4km.zip
Sample Image
Figure 3 shows an example of the sea ice boundary in a shapefile.
![]() |
| Figure 3. Example of Shapefile for 08 November 2010 for the Entire Arctic Region (masie_ice_r00_v01_2010312_4km.shp) |
The time series plots are provided in PNG format and are available for the 16 MASIE regions (a hemisphere wide plot is not provided). For a list of regions, see Table 1. These plots show the sea ice extent for the previous four weeks for each year since 2006. The files range in size from 53 KB to 77 KB depending on the region.
The plots are named according to the following convention and as described in Table 5:
rxx_region_name_ts.png
Sample Image
Figure 4 shows an example of the region time series plots.
![]() |
| Figure 4. Example of a time series plot for region 2, Chukchi Sea, from 13 November to 12 December for 2010 and 2009 (r02_Chukchi_Sea_ts.png) |
The Google Earth files are provided as KMZ files (zipped KML files). These files show the ice extent on a virtual globe for the entire Northern Hemisphere (regional files are not provided). The files range in size from 98 KB to 130 KB depending on the date.
The files are named according to the following convention and as described in Table 5:
masie_ice_rxx_vzz_yyyyddd.kmz
Sample Image
Figure 5 shows an example of the MASIE data in Google Earth.
![]() |
| Figure 5. Example of MASIE data in Google Earth for 12 December 2010 (masie_ice_r00_v01_2010346.kmz) |
The ancillary files provide specific information on the grid and projection, region masks, and region lat/lon vertices of the MASIE products.
The region masks are provided in three formats: NetCDF, GeoTIFF, and PNG.
NetCDF
The netCDF version, named masiemask_ims4km.nc, contains static, ancillary information about the data set. The netCDF file contains a number of variables that are described in Table 3. For detailed information on the netCDF file format, see the NSIDC NetCDF Software Tools Web page and the UCAR Unidata NetCDF Web site. The file is 504 MB in size.
| Variable | Description |
|---|---|
| mask | Land mask in a 2-dimensional byte array that identifies static surface types (missing, ocean, land, ice, coast, and lake) with the byte values described in Table 2. |
| regions | Raster description of each region in a 2-dimensional byte array that contains the classification of the regions where each region is labeled with the byte value given in Table 1. |
| lat | Latitude at the grid cell center in degrees North in a 2-dimensional float array |
| lon | Longitude at the grid cell center in degrees East in a 2-dimensional float array |
| area | Grid cell area in sq km in a 2-dimensional float array |
| x | X coordinate of projection in meters in a 1-dimensional double array |
| y | Y coordinate of projection in meters in a 1-dimensional double array |
| polar_stereographic | Projection information in a 1-dimensional long array |
GeoTIFF and PNG
The GeoTIFF and PNG versions of the masks for land, lake, ocean, coastline, ice, and missing for the entire Northern Hemisphere as well as the 16 MASIE Arctic regions provide visual representations of the masks. The GeoTIFF versions contain georeferencing information embedded in the files, and the PNG files are suitable for quickly browsing the masks. The GeoTIFF files range in size from 120 KB - 37 MB and the PNG files range in size from 7 KB - 670 KB depending on the region.
These files are named according to the following convention and as described in Table 5:
landmask_rxx.tif
landmask_rxx.png
Information about the spatial coverage and lat/lon vertices of each of the 16 regions can be found in the file, MASIE_regions_polygon_vertices.xls. The file is 57 KB is size.
The data and image files are organized on the FTP site in four main directories: ancillary, geotiff, png, and shapefiles. See Figure 6a and 6b for images of the directory structure. Table 4 describes the contents of the directories.
| Directory | Description |
|---|---|
| ancillary | Contains the ancillary data files. masiemask_ims4km.nc and MASIE_regions_polygon_vertices.xls reside in this directory. The subdirectory landmask contains two additional directories: geotiff - contains masks for the entire Northern Hemisphere and the 16 MASIE Arctic regions in GeoTIFF format png - contains masks for the entire Northern Hemisphere and the 16 MASIE Arctic regions in PNG format |
| geotiff | Contains the GeoTIFF image product files. It contains two subdirectories: all_surface - contains the GeoTIFFs with all of the surface classifications ice_only - contains the GeoTIFFs with the binary sea ice/not sea ice classifications |
| png | Contains the PNG browse images |
| shapefiles | Contains the zipped shapefiles |
![]() |
![]() |
| Figure 6a. Top Level Directory Structure | Figure 6b. Expanded Directory Structure |
Table 5 describes the variables used in the file naming convention.
| Variable | Description |
|---|---|
| type | Surfaces classified in this file (all: all surfaces, ice: sea ice/not sea ice only) |
| landmask | Identifies this file as containing a mask |
| rxx | Region (r00 - r16 and zoom). See Table 1 for region names |
| vzz | Version (v01: version 1) |
| yyyy | 4-digit year |
| ddd | 3-digit day of year |
| 4km | Indicates 4 km nominal resolution |
| ts | Indicates this file contains a time series |
| region_names | Region name, see Table 1 for a list |
| ext | Extension that identifies the format of the file (tif: GeoTIFF, png: PNG, shp: shapefile, nc: netCDF, kmz: zipped kml files, and zip: zip file) |
The main source of data for the input IMS sea ice information is visible band data interpreted as described in Section 4 of this document. However, passive microwave data and some analysis chart information are also used. Error can be introduced in all of these data sources.
For a general discussion of the errors possible when using passive microwave imagery for sea ice extent, see the NSIDC Sea Ice Index Interpretation Resources for Sea Ice Trends and Anomalies. Note: The Sea Ice Index input data comes from the SSM/I instrument on the DMSP satellites, but IMS uses the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the Aqua satellite. AMSR-E has a much higher resolution than does SSM/I. For this reason, as well as others explained in Section 4, the IMS product is more accurate on a daily basis than is the sea ice extent from the Sea Ice Index.
IMS analysts also reference operational charts in addition to the visible band, passive microwave, and other sources of data. Operational charts are assembled at NIC as described in the National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format documentation. Since these charts are not daily products, using their information for the IMS product at times requires some extrapolation by the NIC analyst charged with IMS production. Errors in operational charts and their quality will vary based on the available input information, that is, what data are available at the time the product is created.
The IMS product is an operational product and is largely manually produced. These two characteristics are both strengths and potential sources of error or inconsistency. For example, error can be introduced if an analyst misinterprets some satellite imagery. Inconsistency can be introduced when a new analyst interprets data sources slightly differently than does the previous analyst or when the operational nature of the product calls for some sudden adjustment to processing steps. The known inconsistency of operational products means that they are not suitable for long-term trends. At the same time, however, manual analysis results in a product that is more accurate than automatically generated products.
A quality assessment of this product has not been made.
MASIE is based on the NOAA 4 km IMS snow and ice product. The IMS product has been produced in some form since 1966, but has been produced at NIC since 03 March 2008. NSIDC downloads this product daily from NIC. The product is archived and distributed from NSIDC as well as from NIC.
The following section describes all of the processing required to create the MASIE product. It is broken down into two categories:
This section concentrates on how the sea ice component of the IMS product is produced at NIC.
The IMS product is mostly manually generated by an analyst looking at all available satellite imagery, at output from a satellite passive microwave ice mapping algorithm, and at other ancillary data. The analyst begins with a map from the previous day as a first guess. Input satellite data and fields are sampled to a standard 6144 km x 6144 km (~4 km per pixel) matrix. The analysts integrate all data sources for the best estimate of areal coverage of ice cover. A cell is considered ice covered if more than 40 percent of the 4 km cell is covered with ice. This is regardless of the ice thickness or ice type. The 4 km product is automatically saved in ASCII, GeoTIFF, and GIF formats.
For further information, see the documentation for the IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km and 24 km Resolution product at NSIDC or contact NIC.
For determining sea ice areas, IMS analysts combine information from derived ice charts, modeled ice conditions, and surface observations, as well as from visible band, passive microwave, and active microwave data from polar orbiting and geostationary satellite platforms. The use of data sources varies by the timeliness of the data, the resolution of the data, weather conditions, and the time of year. While there is no hierarchy in data sources used for determining ice conditions, analysts tend to prefer visible band imagery. Other satellite sources, such as passive microwave imagers and sounders, Synthetic Aperture Radar (SAR), and scatterometry, are favored when visible light at the surface is either absent or obscured by clouds. In the Arctic, this is quite common.
Ice charts, modeled ice data, ship observations, oceanographic data, and atmospheric conditions are also considered when satellite sources are analyzed in order to provide context and to support the analyst's interpretation regarding the presence or absence of ice.
A cell is considered ice covered if more than 40 percent of the 4 km cell is covered with ice. The 40 percent threshold on ice demarcation for the IMS product is not directly related to 40 percent ice coverage estimated from derived passive microwave sources. At a 4 km2 resolution, several IMS cells fit within each coarser passive microwave derived sea ice concentration cell that are 12.5 km2 or greater. These IMS cells can reflect a mixture of areas with and without ice. Analysts often use data that are of sufficient resolution to allow that mixture to be determined. Furthermore, the use of visible and SAR imagery during summer melt seasons means that IMS product accuracy does not degrade as much as does the accuracy of products based solely on passive microwave data, when surface melt water attenuates the passive microwave signal. This microwave attenuation leads to underestimates of the ice concentrations, particularly along the marginal ice zone during the summer. For more information and references on this error source, see the Error Sources section of the Sea Ice Index documentation.
Data sources for the IMS product have changed since the 4 km resolution was introduced in February 2004; before 2004, the resolution was 24 km. New satellites and other sources have been introduced to replace those that are no longer available. Metadata that records which imagery was used to generate the snow and ice maps are not kept at this time. Helfrich et al. (2007) have an estimate of the percentage of imagery used from each source made before production was moved from the NOAA Satellite Analysis Branch to NIC in 2008.
As of 2010, the primary visible band imagery that analysts use comes from the Moderate Resolution Imaging Spectrometer (MODIS). Other visible satellite data sources include Advanced Very High Resolution Radiometer visible band (AVHRR-VIS), Geostationary Operational Environmental Satellite (GOES) Imager, Spinning Enhanced Visible and Infrared Imager (SEVIRI), and the Multi-functional Transport Satellite (MTSAT) Imager. AMSR-E 89 GHz brightness temperature at 6.25 m resolution is an important passive microwave data source. Analysts directly interpret areas with high 89 GHz brightness temperatures as areas covered by ice when this interpretation is supported by information from other sources. Other passive microwave sources include AMSR-E derived ice concentrations, Special Sensor Microwave Imager (SSM/I) derived ice concentrations, and Advanced Microwave Sounding Unit (AMSU) derived ice concentrations. Automated NOAA ice cover output (Sean Helfrich, citing the work of Peter Romanov, personal communication 08 November 2010) applying AVHRR, SSM/IS, GOES imager, and SEVIRI at the same IMS resolution are also examined as an objective evaluation of ice conditions. SAR imagery from RADARSAT-2, European Remote Sensing Satellite-2 (ERS-2), Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), and Envisat Advanced Synthetic Aperture Radar (ASAR) are used but are not analyzed on the same screen with other IMS data sources. SAR data are examined in adjoining NIC Sea Ice Prediction and Analysis System (SIPAS) workstations and referenced as the IMS analysis is produced.
Derived ice conditions from ice charts and ice edge products from the US, Canadian, Norwegian, Danish, Russian, German, Swedish, and Japanese ice charting agencies also serve as data sources in the absence of direct satellite data or in areas where passive microwave derived ice data has inherit flaws. The use of ice charts is limited due to the infrequency of analyzed ice chart production. Ice edge products are examined thoroughly but are not used directly for the IMS product due to differences in mission ice identification requirements for each product. The NIC and Canadian Ice Service (CIS) ice edge products attempt to delineate not only where ice is present, but also where any ice is likely, regardless of the concentrations, for safety of navigation. The IMS product attempts to demarcate each 4 km x 4 km raster cell that appears to have more than 40 percent ice concentration. This means that the ice edge products encompass many open water areas that the IMS does not. Helfrich et al. (2007) have information on how NIC operational charts tend to differ from NIC operational IMS products.
Modeled ice conditions from the National Centers for Environmental Protection (NCEP) Marine Modeling and Analysis Branch (MMAB) and coupled Numerical Weather Prediction (NWP) models are also available for analysis, though these are generally used only for context and to understand where areas favor ice formation. Ship reports and ice buoys also enhance the analysis by providing limited ground truth, boundary layer weather conditions, and ice motion information.
Further data sources are likely to be introduced in 2012 with the availability of other advanced visible and passive microwave satellite data, coupled ice models, and more SAR imagery. There are also plans to incorporate ancillary information about data quality in future versions of the IMS. Ideas for this include a days since last observed variable so that users know on a cell-by-cell basis if the surface type assignment for a given cell was updated or simply carried over from the last analysis.
This section concentrates on how the MASIE product is created at NSIDC from the input IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km and 24 km Resolution product.
The following steps are used to create the products:
Each of these steps is explained in detail below.
The static mask file masiemask_ims4km.nc is a netCDF file that identifies static surface types (land, ocean, coastline, sea ice, lakes, and missing) and the areas covered by the 16 regions along with other geographic information. Note: Cell locations identified as ocean in the mask file may be identified as ice in later processing steps that create the daily product files.
To create the file, NSIDC uses the following steps:
The static land mask files in GeoTIFF and PNG format with names like landmask_r05.png are derived from masiemask_ims4km.nc. They identify static surface types. Values for the surface types in the GeoTIFF files are given in Table 2.
The daily georeferenced (GeoTIFF) and browse images (PNG) are created with the following steps:
Example filenames for the products produced in this step are masie_all_r01_v01_2010290_4km.tif for the all surfaces GeoTIFF files and masie_ice_r01_v01_2010290_4km.tif for the binary sea ice/not ice data GeoTIFF files. The PNG files have names like masie_all_r01_v01_2010290_4km.png.
To create the data file, masie_extent_sqkm.csv, and obtain the extent data values in square km, we use the following steps:
Unlike the GeoTIFF data products, the processing to create the shapefiles, with names like masie_ice_r00_v01_2010256_4km.zip, includes some additional steps to make the sea ice layer, and particularly the edge, appear more like where an analyst would draw the ice edge if given only the IMS product as input. Therefore, the sea ice labeled in the shapefiles is slightly different from the sea ice labeled in the GeoTIFF files.
We perform the following steps to create the files:
The closing operation step is illustrated in Figure 7.
![]() |
| Figure 7. Illustration of Closing Operation The medium green on the left side is land; the dark green surrounding it is coastline. The area of the lightest green is the sea ice area prior to the closing operation. The light green within the lightest green is sea ice added during the closing operation. The single stand-alone white cell was marked as sea ice in the input IMS product, but is eliminated when sea ice polygons smaller than 16 cells, or roughly 256 sq km, are discarded. The grey line around the light and lightest green is the smoothed ice edge. |
The following related data collections are available from NSIDC:
The following related data collections are available from other data centers and universities:
Arctic Climatology Project. 2000. Environmental Working Group joint U.S.-Russian Sea Ice Atlas. Edited by F. Tanis and V. Smolyanitsky. Ann Arbor, MI: Environmental Research Institute of Michigan in association with the National Snow and Ice Data Center. CD-ROM.
Fetterer, F., compiler. 2006. A Selection of Documentation Related to National Ice Center Sea Ice Charts in Digital Format. NSIDC Special Report 13. Boulder, CO, USA: National Snow and Ice Data Center.
Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2002, updated 2009. Sea Ice Index. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.
Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta. 2007. Enhancements to and Forthcoming Developments To the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrological Processes 21(12): 1576-1586.
McKenna, P., and W. N. Meier. 2002. SSM/I Sea Ice Algorithm Inter-comparison: Operational Case Studies from the National Ice Center. IGARSS Proceedings, INT_A32_04, Toronto, 24-28 June 2002.
Meier, W. N., M. L. van Woert, and C. Bertoia. 2001. Evaluation of Operational SSM/I Ice Concentration Algorithms. Annals of Glaciology 33: 102-108.
Meier, W. 2005. Comparison of Passive Microwave Ice Concentration Algorithm Retrievals With AVHRR Imagery in Arctic Peripheral Seas. IEEE Transactions on Geoscience and Remote Sensing 40(6): 1324-1334.
Meier, W. N., F. Fetterer, C. Fowler, P. Clemente-Colón, T. Street. 2006. Operational Sea Ice Charts: An Integrated Data Product Suitable for Observing Long-term Changes in Arctic Sea Ice? Poster presented at the AGU Fall Meeting, 2006 and available on the NSIDC Posters and Presentations page.
Meier, W. N., T. Maksym, and M. L. Van Woert. 2002. Evaluation of Arctic Operational Passive Microwave Products: A Case Study in the Barents Sea During October 2001. Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice, Dunedin, New Zealand, 2nd-6th December 2002, International Association of Hydraulic Engineering and Research.
National Ice Center. 2006. National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format. Edited and compiled by F. Fetterer and C. Fowler. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.
Partington, K., T. Flynn, D. Lamb, C. Bertoia, and K. Dedrick. 2003. Late Twentieth Century Northern Hemisphere Sea-ice Record from U.S. National Ice Center Ice Charts. Journal of Geophysical Research 108(C11), doi:10.1029/2002JC001623.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan. 2003. Global Analysis of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century. Journal of Geophysical Research. 108 (D14), doi:10.1029/2002JD002670.
Willis Z., M. Foster, C. Bertoia, and K. Dedrick. 2000. National Ice Center/Naval Ice Center Support to Submarine Operations. Undersea Warfare 8: 18-21.
Following visits in 2009 to NSIDC and NIC by Rear Admiral David Titley, at the time Commander Naval Meteorology and Oceanography Command (CNMOC), the concept for a collaborative MASIE product was developed through further discussions between NIC's Chief Scientist Pablo Clemente-Colón and NSIDC's NOAA Liaison Florence Fetterer. Product development objectives included wider dissemination of information from NIC products and more accurate daily sea ice edge position views for NSIDC's user base. Commander Denise M. Kruse, NIC's Director at the time, endorsed the collaboration that made MAISE possible. Sean Helfrich of NIC leads work on the IMS and helped shaped MASIE development.
The MASIE product team at NSIDC included Matt Savoie for algorithm and code development, Stephen Truex and Ann Windnagel for Web site development, Lisa Ballagh for assistance with shapefiles, and Walter Meier as science advisor.
Funding for MASIE development was provided by NIC and the US Naval Oceanographic Office (NAVO). We are currently seeking funding for its ongoing maintenance and further development. Distribution of the data set from NSIDC is supported by the NOAA@NSIDC Team with funding from NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) and the National Geophysical Data Center (NGDC).
Table 6 lists the acronyms used in this document.
| Acronym | Description |
|---|---|
| ALOS | Advanced Land Observing Satellite |
| AMSR-E | Advanced Microwave Scanning Radiometer - Earth Observing System |
| AMSU | Advanced Microwave Sounding Unit |
| ASAR | Advanced Synthetic Aperture Radar |
| ASCII | American Standard Code for Information Interchange |
| AVHRR-VIS | Advanced Very High Resolution Radiometer - Visible Band |
| CIS | Canadian Ice Service |
| DMSP | Defense Meteorological Satellite Program |
| FTP | File Transfer Protocol |
| GeoTIFF | Georeferenced Tagged Image File Format |
| GOES | Geostationary Operational Environmental Satellite |
| IDL | Interactive Data Language |
| IMS | Interactive Multisensor Snow and Ice Mapping System |
| MASIE-NH | Multisensor Analyzed Sea Ice Extent - Northern Hemisphere |
| MMAB | Marine Modeling and Analysis Branch |
| MODIS | Moderate Resolution Imaging Spectroradiometer |
| MTSAT | Multi-functional Transport Satellite |
| NAVO | Naval Oceanographic Office |
| NESDIS | National Environmental Satellite, Data, and Information Service |
| NetCDF | Network Common Data Format |
| NGDC | National Geophysical Data Center |
| NIC | National Ice Center |
| NOAA | National Oceanic and Atmospheric Administration |
| NSIDC | National Snow and Ice Data Center |
| NWP | Numerical Weather Prediction |
| PALSAR | Phased Array type L-band Synthetic Aperture Radar |
| PNG | Portable Network Graphics |
| RGB | Red, Green, Blue |
| SAR | Synthetic Aperture Radar |
| SEVIRI | Spinning Enhanced Visible and Infrared Imager |
| SSM/I | Special Sensor Microwave Imager |
| URL | Uniform Resource Locator |
Florence Fetterer and Ann Windnagel wrote this documentation in November 2010 based primarily on information from Matt Savoie (NSIDC) and Sean Helfrich (NOAA NIC), as well as on documentation for related data sets.
November 2010
http://nsidc.org/data/docs/noaa/g02186_masie/index.html