Close

Service Interruption

The NSIDC Web site and data services are currently having intermittent problems and may be unavailable. We are working to restore these services as soon as possible and apologize for any inconvenience this may cause. Please contact NSIDC User Services for assistance.

Note: This data set was first published on the 1998 CAPS CD.
The text for this document was taken unchanged from that CD.

See also Description of Data Files.

Deep-well database

"Permafrost-geothermal parameters of Western Siberia"

by V.V.An and V.N.Devyatkin, Earth Cryosphere Institute SB RAS

Please cite these data as follows:

An, V. 1998.Ground temperatures in deep wells of Western Siberia In: International Permafrost Association, Data and Information Working Group, comp. Circumpolar Active-Layer Permafrost System (CAPS), version 1.0. CD-ROM available from National Snow and Ice Data Center, nsidc@kryos.colorado.edu. Boulder, Colorado: NSIDC, University of Colorado at Boulder.

Permafrost-geothermal database contains information on:

Permafrost-geothermal database reveals a ratio between the thermal flux values near the boundary of frozen (qfr) and underlying unfrozen (thawed) (qunfr) horizons of lithosphere. This ratio enables to determine either stationary or non-stationary geotemperature field in frozen rocks under global air temperature changes. If qfr=qunfr stationary temperature field exists, if 0<<=qfr<qunfr: non-stationary (degradational), or if qfr>qunfr: non-stationary (aggradational) temperature field of permafrost.

To calculate a conductive component of a thermal flux the following expression was used: q=lg, where l - coefficient of heat conductivity of rocks (determined for cores in laboratory conditions or taken from tabulated data, based on geological properties of rocks, and g - the geothermal gradient determined by temperature measurements in boreholes.

The database allows also to determine the permafrost thickness and to reveal the character of distribution of internal thermal flux, to determine the rock temperatures at various depths and to apply this information for practical engineering in connection with prospecting and operation of gas-oil-bearing deposits and geothermal energy.