Slow growth on the Atlantic side of the Arctic; Antarctic ice extent remains high

Ice extent in the Arctic was below average during November. There was substantially less ice than average in the northern Barents Sea, likely due to an influx of warm ocean waters and the persistence of a strong positive Arctic Oscillation (AO). In contrast, sea ice extent in Antarctica remained unusually high.

Overview of conditions

Figure 1. Arctic sea ice extent for November 2013 was 10.24 million square kilometers (3.95 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice continued to expand during November, gaining 2.24 million square kilometers (865,000 square miles) of ice since the beginning of the month. Sea ice extent for November averaged 10.24 million square kilometers (3.95 million square miles). This is 750,000 square kilometers (290,000 square miles) below the 1981 to 2010 average extent and is the 6th lowest November extent in the 35-year satellite data record. As was the case for October 2013, sea ice extent for November 2013 remained within two standard deviations of the long-term 1981 to 2010 average.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of December 2, 2013, along with daily ice extent data for the previous five years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

For the month as a whole, ice grew at near average rates throughout November at 74,800 square kilometers (28,900 square miles) per day compared to the 1981 to 2010 average of 70,500 square kilometers (27,200 square miles) per day. This was despite a period of slow ice growth during the first part of the month. At the end of the month, extent was 580,000 square kilometers (224,000 square miles) lower than average and 420,000 square kilometers (162,000 square miles) above the same time last year.

The below average ice extent in the Arctic was largely due to a lack of ice in the Barents Sea, which has shown a pattern of low autumn and winter ice extent over the recent years. This November, the overall extent in the Barents Sea was the second lowest in the satellite record, with the lowest occurring in 2012.

The low ice in the Barents Sea is due to several possible factors. First, it could reflect the influx of warm ocean currents that inhibited ice growth. The atmosphere also played some role. Sea level pressure over the Arctic Ocean was lower than normal by as much as 9 to 12 hPa. This is consistent with the persistent strongly positive phase of the AO seen through the month; a positive AO generally leads to higher than average air temperatures over Eurasia and adjacent sea ice areas. November air temperatures in the Barents Sea were on the order of 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) above average. The higher than average temperatures may also simply reflect the lack of sea ice in the Barents Sea. This is because under open water conditions, the ocean readily releases heat to the overlying atmosphere.

November 2013 compared to previous years.

Figure 3. Monthly November ice extent for 1978 to 2013 shows a decline of –4.9% per decade relative to the 1981 to 2010 average.

Credit: National Snow and Ice Data Center
High-resolution image

Including 2013, the linear trend in November ice extent is –4.9% per decade relative to the 1981 to 2010 mean, or –53,500 square kilometers per year (–20,700 square miles per year).

 Extensive ice in Antarctica

Figure 4a. Antarctic sea ice extent for November 2013 was 17.2 million square kilometers (6.63 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic South Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

While it is early winter in the Arctic, it is early summer in the Antarctic. Continuing patterns seen in recent years, Antarctic sea ice extent remains unusually high, near or above previous daily maximum values for each day in November. Sea ice is anomalously extensive across the Peninsula, the Amundsen Sea, and the Wilkes Land sectors. However, it has retreated in the northern Ross Sea  region—where it had been far to the north of the mean ice edge—to more typical extent locations. Sea ice extent averaged 17.16 million square kilometers (6.63 million square miles) for November. The long-term 1981 to 2010 average extent for this month is 16.30 million square kilometers (6.29 million square miles).

Figure 4b. The graph above shows Antarctic sea ice extent as of December 2, 2013, along with daily ice extent data for the previous year. 2013 is shown in light blue and 2012 in dark blue. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Beginning in October, wind conditions in the Ross Sea shifted from a direction favoring a northward growth of sea ice to a more westerly direction. This and the coming of sunshine and warmth with spring led to a retreat from record ice extents there. However, November brought cool conditions (1 to 3 degrees Celsius, or 2 to 5 degrees Fahrenheit, below the 1981 to 2010 average) around the Peninsula and much of the western hemisphere of the Southern Ocean. Winds have also favored a northward drift along the western Peninsula. Overall, cool conditions and extensive ice around the Peninsula strongly contrast with the past few decades’ shift to a more ice free Peninsula and extensive surface melting there. Palmer Station, the U.S. Antarctic research base, was once again briefly surrounded by sea ice this winter, as it was in 2012.

Overall, the extreme sea ice extent may be linked to strong variations in the westerly wind flow, the main circulation around Antarctica. Strong westerly flow favors ice growth in autumn and early winter, and this was the case; however, as sea ice approached a maximum, the westerly wind pattern abated, allowing ice to drift even further north than usual, in some places urged on by southerly winds.

At the same time, part of the interior has seen record warm winter events, with several daily temperature records set at the South Pole . These warm events are also linked to the reduction in westerly wind strength in August to October. Weaker westerly winds allow more north-south flow into Antarctica, occasionally bringing relatively warm air masses into the interior. Between September 11 and September 15, usually a time of unimaginable cold, four daily maximum temperature records were set, in one case by more than 8.5 degrees Celsius (15.3 degrees Fahrenheit). On September 13, the temperature reached –27.7 degrees Celsius (–17.9 degrees Fahrenheit), a temperature more typical of early summer conditions.

Big berg backs out of bay

Figure 5. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured a true-color image of the iceberg in Pine Island Bay on November 16. The iceberg has been named B-31 by the U.S. National Ice center and is about 35 kilometers by 20 kilometers, roughly the size of Singapore. .||Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC|  High-resolution image

Figure 5. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured a true-color image of the iceberg in Pine Island Bay on November 16. The iceberg has been named B-31 by the U.S. National Ice Center and is about 35 kilometers by 20 kilometers, roughly the size of Singapore.

Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC
High-resolution image

In Pine Island Bay, a medium-sized iceberg that had been pinned on a shoal near the front of Pine Island Glacier began to drift into the Southern Ocean. The iceberg has received significant attention because it has broken away from Antarctica’s largest glacier (as measured by amount of ice moved per year). Pine Island Glacier has accelerated significantly in recent years as increasingly warm ocean water at depth have melted and thinned the ice at the point where the glacier goes afloat. NASA scientists and other groups like the British Antarctic Survey have installed instruments and are making further measurements to determine if the glacier will accelerate further in the aftermath of the loss of the iceberg.

Increased methane emission from the Siberian sea floor

A recent paper by colleagues at the University of Alaska Fairbanks suggests that ocean bottom water temperatures are increasing as Arctic sea ice cover has decreased, leading to a recent increase in methane flux from the seabed to the atmosphere. Ship-based observations show that methane concentrations in the air above the East Siberian Sea Shelf are nearly twice as high as the global average.

The Siberian continental shelf is a vast region of shallow-water covered continental crust, comprising about 20% of the global area of the continental shelf. During the last glacial maximum, much of the shelf was exposed to the cold atmosphere and froze to a depth of about 1.5 kilometers (about 1 mile). Layers of sediment below the permafrost slowly emit methane gas, and this gas has been trapped for millennia beneath the permafrost. As sea levels rose at the end of the ice age, the shelf was once again covered by relatively warm ocean water, thawing the permafrost and releasing the trapped methane. Methane is a potent greenhouse gas but is relatively short-lived in the atmosphere (about 12 years), leading to reduced global warming potential over time. In the short-term however, methane has a global warming potential 86 times that of carbon dioxide.

Reference

Shakhova, N., I. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach, D. Chernykh, C. Stubbs, D. Nicolsky, V. Tumskoy, and Ö. Gustafsson. 2013. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, http://dx.doi.org/10.1038/ngeo2007 .

A typical October in the Arctic

Nearly frozen up by the end of October, the Arctic Ocean still showed small regions of open water within the Beaufort and Chukchi seas on its western side, and within the Kara Sea on its eastern side. These open water areas contributed to warmer than average air temperatures over the western Arctic.

Overview of conditions

Figure 1. Arctic sea ice extent for October 2013 was 8.10 million square kilometers (3.13 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice continued to expand during October as temperatures dropped and the number of daylight hours diminished, gaining 3.21 million square kilometers (1.24 million square miles) of ice since the beginning of the month. Average ice extent for October was 8.10 million square kilometers (3.13 million square miles), making it the 6th lowest October extent in the 35-year satellite data record. This was 810,000 square kilometers (313,000 square miles) below the 1981 to 2010 average extent. The October 2013 extent remains within two standard deviations of the long-term 1981 to 2010 average.

As open water areas refreeze and continue to lose the heat gained during the summer back to the atmosphere, near surface air temperatures have remained higher than average over areas that have not yet completely frozen over. As of the beginning of November, small parts of the Beaufort, Chukchi, and Kara seas remain ice free, while the East Siberian and Laptev seas have completely frozen over. Higher than average air temperatures have been observed over the ice-free regions while the rest of the Arctic is at near average to below average temperatures. This is in contrast to the first half of October 2012 when large parts of the East Siberian and Laptev seas remained ice free and the entire Arctic was warmer than average.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of November 4, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of November 4, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Ice grew at rates faster than average throughout October, at 103,500 square kilometers (40,000 square miles) per day compared to the 1981 to 2010 average of 87,500 square kilometers per day (33,800 square miles per day). However, this rate is slower than last year, when ice extent doubled during the month of October. Nevertheless, the ice cover is more extensive than in 2012. At the end of the month the extent was 710,000 square kilometers (274,100 square miles) below average and 1.1 million square kilometers (424,700 square miles) above the same time last year.

While the sea ice extent this summer was higher than the past several summers, extent remained anomalously low compared to the long-term mean, and the larger regions of open water during summer were able to absorb the sun’s energy, leading to higher sea surface temperatures. Before the ocean can refreeze in the autumn, it releases this excess heat back to the atmosphere, resulting in higher than average air temperatures. In October, air temperatures along the coastal Beaufort Sea were 6 to 8 degrees Celsius (11 to 14 degrees Fahrenheit) higher than average. Air temperatures were also 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) higher than average over much of the western and central Arctic and near Greenland and the Canadian Archipelago.

October 2013 compared to previous years

Figure 3. Monthly October ice extent for 1979 to 2013 shows a decline of –7.1%  per decade relative to the 1981 to 2010 average.||Credit: National Snow and Ice Data Center|  High-resolution image

Figure 3. Monthly October ice extent for 1979 to 2013 shows a decline of –7.1% per decade relative to the 1981 to 2010 average.

Credit: National Snow and Ice Data Center
High-resolution image

The year 2013 marks the first October with an extent above 8 million square kilometers (3.09 million square miles) since 2009 and only the second since 2006. From 1979 to 2006, average October extent was never below 8 million square kilometers, and several years had October extents above 9 million square kilometers (3.47 million square miles). The lowest October extent, less than 7 million square kilometers (2.7 million square miles), was observed in 2007. The linear trend in October ice extent is –7.1 % per decade relative to the 1981 to 2010 mean, or –63,400 square kilometers per year (–24,500 square miles per year).

Sea ice decline and the greening of Arctic tundra

Figure 4. Yellow flowers (Papaver dahlianum), typical of the high Arctic subzone A, dot the tundra on Ellef Ringnes Island in Nunuvut, Canada. Arctic tundra is the coldest of the Circumpolar Arctic Vegetation Map’s bioclimate subzones. The subzones range from mean July temperatures just above freezing in the tundra (Subzone A) to mean July temperatures of around 10 degrees Celsius in Subzone E where shrubs can reach up to heights of 2 meters.

Credit: D. A. Walker
High-resolution image

As sea ice extent declined over the past years, Arctic tundra has received an increased amount of summer warmth and has gotten greener. Arctic tundra (Figure 4) is a maritime biome, most of which can be found within 100 kilometers (62 miles) of seasonally ice-covered seas. This proximity to sea ice limits the tundra’s exposure to available warmth and vegetation growth. Over 30 years of remote sensing data show that the decline in sea ice extent corresponds to land surface warming (Figure 5, left panel) and increased vegetation cover (Figure 5, right panel, Maximum Normalized Difference Vegetation Index, or MaxNDVI). When sea ice extent is below average in coastal seas, land surfaces warm, and satellites see a stronger signal of vegetation.

Figure 5. These charts show trends in spring sea ice, land surface warmth, open water area, and vegetation from 1982 to 2012. The percent trend highlights the size of relative changes in the Arctic.Sea ice (top left) is shown as percent concentration; land surface temperature (top right) is expressed as summer warmth index (SWI); open water (bottom left) is expressed as percent of area; and vegetation (bottom right) is shown as Maximum Normalized Difference Vegetation Index (MaxNDVI). Data are derived from AVHRR. ||Credit: U.S. Bhatt| High-resolution image

Figure 5. These charts show trends in spring sea ice, land surface warmth, open water area, and vegetation from 1982 to 2012. The percent trend highlights the size of relative changes in the Arctic. Sea ice (top left) is shown as percent concentration; land surface temperature (top right) is expressed as summer warmth index (SWI); open water (bottom left) is expressed as percent of area; and vegetation (bottom right) is shown as Maximum Normalized Difference Vegetation Index (MaxNDVI). Data are derived from AVHRR.

Credit: U.S. Bhatt
High-resolution image

However, the same data offer a few puzzles. While land surface warming and vegetation cover have steadily increased in the vicinity of Greenland over the last thirty years, warming and vegetation have actually decreased in some parts of Eurasia over the last decade. This suggests that once sea ice declines or the climate warms beyond a limit, other processes begin to play a more central role in summer climate variability, such as moisture availability in the soil or cloudiness, which can lead to cooler conditions during the northern summer. Another mystery is the decline in vegetation cover over the southwest Alaskan tundra despite an increase in land surface temperature over the same period. Researchers are looking into these puzzles as they think ahead to what the tundra may look like in a future of ice-free summers.

Further reading

Bhatt, U.S., D.A. Walker, M.K. Raynolds, P.A. Bieniek, H.E. Epstein, J.C. Comiso, J.E. Pinzon, C.J. Tucker, and I.V. Polyakov. 2013. Recent Declines in Warming and Arctic Vegetation Greening Trends over Pan-Arctic Tundra. Remote Sensing (Special NDVI3g Issue), 5, 4229-4254; doi:10.3390/rs5094229.

Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, C.J. Tucker, C.E. Tweedie, and P.J. Webber. 2010. Circumpolar Arctic tundra vegetation change is linked to sea-ice decline. Earth Interactions. August 2010, Vol. 14, No. 8: 1-20. doi: 10.1175/2010EI315.1.

Raynolds, M.K., Walker, D.A. & Maier, H.A. 2006. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens. Environ. 102: 271-281.

Walker, D.A. et al. 2005. The Circumpolar Arctic Vegetation Map. J. Veg. Sci., 16, 267–282.

A better year for the cryosphere

This summer, Arctic sea ice loss was held in check by relatively cool and stormy conditions. As a result, 2013 saw substantially more ice at summer’s end, compared to last year’s record low extent. The Greenland Ice Sheet also showed less extensive surface melt than in 2012. Meanwhile, in the Antarctic, sea ice reached the highest extent recorded in the satellite record.

Overview of conditions

map of sea ice extent

Figure 1. Arctic sea ice extent for September 2013 was 5.35 million square kilometers (2.07 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent reached its annual minimum on September 13. After the minimum, extent remained largely unchanged for much of the middle of September, but increased rapidly toward the end of the month with the onset of strong autumn cooling.

Arctic sea ice extent averaged for September 2013 was 5.35 million square kilometers (2.07 million square miles). This was 1.17 million square kilometers (452,000 square miles) below the 1981 to 2010 average extent. September 2013 ice extent was 1.72 million square kilometers (664,000 square miles) higher than the previous record low for the month that occurred in 2012.

Conditions in context

graph of sea ice extent

Figure 2. The graph above shows Arctic sea ice extent as of September 30, 2013, along with daily ice extent data for the previous five years. 2013 is shown in light blue, 2012 in green, 2011 in orange, 2010 in light purple, 2009 in dark blue, and 2008 in dark purple. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

The rate of ice loss varied through the summer. Both May 2012 and May 2013 saw near average extents and rates of decline. This year, the rate of ice loss sped up in late June and early July, then settled into a near-average rate of decline, with extent approximately 500,000 square kilometers (193,000 square miles) greater than the same time in 2012. Ice loss then slowed down in August to only a little faster than average rates of loss for that time of year. In comparison, during 2012, the rate of loss accelerated in early June and through July, then accelerated even more in August to produce a new record low extent in September 2012.

Overall, 10.03 million square kilometers (3.87 million square miles) of ice were lost between the 2013 maximum and minimum extents. This was the seventh summer that more than 10 million square kilometers of ice extent were lost; all but one of the seven (the summer of 1990) have occurred since 2007.

September 2013 compared to previous years

Figure 3. Monthly September ice extent for 1979 to 2013 shows a decline of X.X% per decade.||Credit: National Snow and Ice Data Center |High-resolution image

Figure 3. Monthly September ice extent for 1979 to 2013 shows a decline of 13.7% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

September average sea ice extent for 2013 was the sixth lowest in the satellite record. The 2012 September extent was 32% lower than this year’s extent, while the 1981 to 2010 average was 22% higher than this year’s extent. Through 2013, the September linear rate of decline is 13.7% per decade relative to the 1981 to 2010 average.

What a difference a year makes

Figure 4. These images show June to August sea level pressures compared to the 1981 to 2010 average, for 2012 (left) and 2013 (right). In 2013, low pressures prevailed over the central Arctic Ocean and Greenland. Blues and purples indicate low pressure, while greens, yellows, and reds indicate high pressures. ||Credit: National Snow and Ice Data Center courtesy NOAA/ESRL Physical Sciences Division|High-resolution image

Figure 4. These images show June to August sea level pressures compared to the 1981 to 2010 average, for 2012 (left) and 2013 (right). In 2013, low pressures prevailed over the central Arctic Ocean and Greenland. Blues and purples indicate low pressures, while greens, yellows, and reds indicate high pressures.

Credit: National Snow and Ice Data Center courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

Contrasting weather conditions were a significant factor in this year’s higher sea ice extent and lower Greenland Ice Sheet melt intensity, compared to last year. This summer saw air temperatures at the 925 hPa level that were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) lower than last summer. It was also a cool summer compared to recent years over much of the Arctic Ocean, and even cooler than the 1981 to 2010 average in some regions, particularly north of Greenland.

While 2012 and 2013 extents were similar through May, weather patterns from June to August helped retain more ice. Last summer was marked by lower than average pressure over the Eurasian side of the Arctic and higher than average pressure over Greenland. This resulted in a dipole-like wind pattern that favored ice transport across the ocean and the import of heat from southern latitudes along the Eurasian side of the Arctic. In contrast, this summer was characterized by unusually low pressure over much of the Arctic Ocean, which limited heat import from the south and brought more extensive cloud cover, keeping temperatures lower. In addition, the winds associated with the low pressure caused the ice cover to spread out and cover a larger area.

Over land, the cool spring resulted in greater than average March and April snow cover for the Northern Hemisphere. However, as in recent years, the snow melted rapidly, and by May, snow cover was at near record lows. Cooler weather conditions also limited surface melt on the Greenland Ice Sheet, which was still greater than the 1981 to 2010 average, but not near the record set in 2012 (see our Greenland Ice Sheet Today post for more details).

Ice thickness and age

Figure 5. These images from March 2013 (top) and September 2013 (bottom) show the changes in multiyear ice between this year's sea ice maximum and minimum extents. In contrast to 2012, the record low extent year, multiyear ice tended to stay put, rather than being circulated around, which can expose it to warmer currents and winds that increase melt. Much of the Arctic ice cover now consists of first-year ice (shown in purple), which tends to melt rapidly in summer’s warmth. ||Credit: NSIDC courtesy Jim Maslanik, University of Colorado Boulder and Walt Meier, NASA Goddard Cryospheric Sciences |High-resolution image

Figure 5. These images from March 2013 (top) and September 2013 (bottom) show the changes in multiyear ice between this year’s sea ice maximum and minimum extents. In contrast to 2012, the record low extent year, multiyear ice tended to stay put, rather than being circulated around, which can expose it to warmer currents and winds that increase melt. Much of the Arctic ice cover now consists of first-year ice (shown in purple), which tends to melt rapidly in summer’s warmth.

Credit: NSIDC courtesy Mark Tschudi, University of Colorado Boulder and Walt Meier, NASA Goddard Cryospheric Sciences
High-resolution image

The pattern of ice thickness for the summer of 2013 is similar to what has been seen in recent years. According to data from the European Space Agency CryoSat-2 radar altimeter, the spring melt season started with an Arctic ice cover thinner than in any recent year. This corroborates thickness information inferred from a calculation of ice age that showed first-year ice, which is thinner and more vulnerable to melt, over a significant part of the Arctic Ocean as the melt season started (see our earlier post). Older, thicker ice remained in a region roughly between the North Pole and the Canadian Archipelago and the Greenland coast.

In recent summers, there has been considerable transport of older ice into the Beaufort and Chukchi seas, where it has been broken up and exposed to a warm ocean and high air temperatures. This has been a major factor in the loss of multiyear ice over the last decade. This year was notably different. Because this year’s wind pattern was different than 2012, the multiyear ice largely remained in a compact area along the Canadian Archipelago and did not circulate into the Beaufort and Chukchi seas. The cooler conditions this summer also helped preserve more of the first-year ice through the summer.

The first-year ice that survived the summer, now defined as second-year ice, will thicken through autumn and winter. However, it would take several more cool years in a row to build the ice cover back to the state it was in during the 1980s, which consisted of a larger proportion of thicker, multiyear ice that was more resistant to melt. While ice in the Arctic will thicken through this autumn and winter, winds may also transport some of the thicker ice out of the Arctic Ocean and into the North Atlantic.

Another record high in the Antarctic

September Antarctic sea ice image

Figure 6. Antarctic sea ice extent for September 2013 was 19.77 million square kilometers (7.63 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic South Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent reached 19.47 million square kilometers (7.52 million square miles) on September 22, a record high maximum extent relative to the satellite record, and slightly above the previous record high set last year. This year’s maximum extent was 3.6% higher than the 1981 to 2010 average Antarctic maximum, representing an ice edge that is 35 kilometers (approximately 22 miles) further north on average. Overall, Antarctic September sea ice extent is increasing at 1.1% per decade relative to the 1981 to 2010 average. This increase is likely due to a combination of factors, including winds and ocean circulation. A recent paper by our colleague Jinlun Zhang at the University of Washington concludes that changes in winds are resulting in both more compaction within the ice pack and more ridging, causing a thickening of the pack and making it more resistant to summer melt.

Table 1: Previous Arctic sea ice extents for the month of September *

Year Average Arctic Sea Ice Extent for September Trend, in % per decade (relative to 1981-2010 avg.)
in millions of square kilometers in millions of square miles
2007 4.30 1.66 -11.0
2008 4.73 1.83 -11.0
2009 5.36 2.08 -12.0
2010 4.90 1.90 -12.4
2011 4.63 1.79 -12.0
2012 3.63 1.40 -14.0
2013 5.35 2.07 -13.7
1979 to 2000 average 7.04 2.72
1981 to 2010 average 6.52 2.52

Note that the dates and extents of the minimums have been re-calculated from what we posted in previous years; see our Frequently Asked Questions for more information.

Reference

Zhang, J. In press. Modeling the impact of wind intensification on Antarctic sea ice volume. J. Climate, doi:10.1175/JCLI-D-12-00139.1.

Arctic sea ice reaches lowest extent for 2013

On September 13, Arctic sea ice reached its likely minimum extent for 2013. The minimum ice extent was the sixth lowest* in the satellite record, and reinforces the long-term downward trend in Arctic ice extent. Sea ice extent will now begin its seasonal increase through autumn and winter. Meanwhile, in the Antarctic, sea ice extent reached a record high on September 18, tied with last year’s maximum.

Please note that this is a preliminary announcement. Changing winds could still push ice floes together, reducing ice extent further. NSIDC scientists will release a full analysis of the melt season in early October, once monthly data are available for September.

Overview of conditions

Figure 1. Arctic sea ice extent for September 13, 2013 was 5.10 million square kilometers (1.97 million square miles). The orange line shows the 1981 to 2010 median extent for that day. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

On September 13, 2013, sea ice extent dropped to 5.10 million square kilometers (1.97 million square miles). This appears to have been the lowest extent of the year. In response to the setting sun and falling temperatures, ice extent will now climb through autumn and winter. However, a shift in wind patterns or a period of late season melt could still push the ice extent lower. The minimum extent was reached two days earlier than the 1981 to 2010 average minimum date of September 15.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of September 19, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray.  Sea Ice Index  data.||Credit: National Snow and Ice Data Center|  High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of September 19, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

This year’s minimum was 1.69 million square kilometers (653,000 square miles) above the record minimum extent in the satellite era, which occurred on September 16, 2012, and 1.12 million square kilometers (432,000 square miles) below the 1981 to 2010 average minimum.

Varying distribution of ice in 2013 versus 2012

Figure 3. This image compares differences in ice-covered areas between September 13, 2013, the date of this year’s minimum, and September 16, 2012, the record low minimum extent. Light gray shading indicates the region where ice occurred in both 2013 and 2012, while white and dark gray areas show ice cover unique to 2013 and to 2012, respectively.  Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 3. This image compares differences in ice-covered areas between September 13, 2013, the date of this year’s minimum, and September 16, 2012, the record low minimum extent. Light gray shading indicates the region where ice occurred in both 2013 and 2012, while white and dark gray areas show ice cover unique to 2013 and to 2012, respectively. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Comparing this year’s minimum extent to 2012, while extent was higher on average this year, there were variations from region to region. There was considerably higher sea ice extent in the Beaufort, Chukchi, and East Siberian sea regions, with the ice edge several hundred kilometers farther south compared to last year. This year the Canadian Archipelago also retained much more ice, keeping the Northwest Passage closed.  The most notable area of less ice this year compared to last was off the east coast of Greenland, south of Fram Strait. Other small areas of decreased extent were found north of the Kara and Laptev seas.

See an animation of this summer’s sea ice extent produced by the NASA Scientific Visualization Studio at http://svs.gsfc.nasa.gov/goto?4104.

Previous minimum Arctic sea ice extents**

Table 1.  Previous minimum Arctic sea ice extents
 YEAR MINIMUM ICE EXTENT DATE
IN MILLIONS OF SQUARE KILOMETERS IN MILLIONS OF SQUARE MILES
2007 4.17 1.61 September 18
2008 4.59 1.77 September 20
2009 5.13 1.98 September 13
2010 4.63 1.79 September 21
2011 4.33 1.67 September 11
2012 3.41 1.32 September 16
2013 5.10 1.97 September 13
1979 to 2000 average 6.70 2.59 September 13
1981 to 2010 average 6.22 2.40 September 15

According to near-real-time data, this year’s minimum extent is slightly lower than 2009. However, the ranking between 2009 and 2013 is close, and may change once the final version of the data are processed. See our Frequently Asked Questions: Do your data undergo quality control? for more information about near-real-time data.

** Note that the dates and extents of the minimums have been re-calculated from what we posted in previous years; see our Frequently Asked Questions for more information.

Melt season ending

Following a relatively cool summer, sea ice extent fell to a little over 5 million square kilometers (1.93 million square miles) over the first two weeks of September and is at or near the minimum extent for the year. NSIDC will announce the final minimum extent and date once it is confirmed.

Overview of conditions

Figure 1. Arctic sea ice extent for September 16, 2013 was 5.10 million square kilometers (X.XX million square miles). The orange line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole.  Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for September 16, 2013 was 5.10 million square kilometers (2.00 million square miles). The orange line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent as of September 16, 2013 was 5.10 million square kilometers (2.00 million square miles). This is substantially more ice than observed on the same date last year, yet sea ice extent remains quite low compared to the long-term 1981 to 2010 average. As is typical for this time of year, winds or currents can compact or spread apart the ice, resulting in small daily fluctuations of the ice cover.

During the first two weeks of September, sea ice extent continued to decline in the East Siberian, Laptev, and Kara seas while staying essentially constant in the Beaufort and Chukchi seas since the beginning of September. The Northwest Passage has seen more extensive ice this summer since 2007 and is not open. On the Eurasian side of the Arctic, the Northern Sea Route appears to have opened up briefly in September.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of September 16, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of September 15, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Ice loss through the first two weeks of September was faster than average. Air temperatures at the 925 hPa level were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) higher than average over much of the Arctic Ocean the first part of the month, in stark contrast to most of the summer when cooler temperatures dominated. Below average temperatures were found in the Beaufort and Chukchi seas where ice growth began around the first week of the month.

Even though extent at the beginning of this summer was similar to last year, the melt season ended with considerably more ice. This is not surprising, as climate models consistently project that there will be large variations in summer ice extent from year to year. A cool summer can help to retain a thin layer of ice, increasing the overall ice extent. Conversely, a warm summer can help to remove much of the thin ice cover.

Cold summer over central Arctic and Greenland

Figure 3: Figures above show the 925 hPa air temperature anomalies averaged from June, July and August 2013 relative to 1981 to 2010 (left) and relative to 2007 to 2012 (right). ||Credit: NOAA/ESRL Physical Sciences Division||High-resolution image

Figure 3: These figures show air temperature anomalies averaged from June, July, and August 2013 at the 925 hPa level, relative to the 1981 to 2010 average (left) and relative to the 2007 to 2012 average (right).

Credit: NOAA/ESRL Physical Sciences Division
High-resolution image

As a whole, air temperatures this summer have been below average over most of the central Arctic Ocean and Greenland, helping to slow down ice melting. Compared to the 1981 to 2010 average, air temperatures at the 925 hPa level have been -0.5 to -2.0 degrees Celsius (-0.9 to -3.6 degrees Fahrenheit) below average over central Greenland, north of Greenland and towards the pole, and over the Canadian Archipelago. Unusually low temperatures are also noted over the East Siberian Sea, where ice cover has remained near average throughout the summer.

The cool conditions that have prevailed this summer are even more remarkable when compared to the last six years, which have seen very low September sea ice extents. Compared to the 2007 to 2012 average, air temperatures at the 925 hPa level averaged over June, July and August were lower this summer throughout most of the Arctic by -0.5 to -3.5 degrees Celsius (-0.9 to -6.3 degrees Fahrenheit). The previous six summers have been dominated by high sea level pressure over the Beaufort Sea and Greenland, paired with low sea level pressure over Eurasia—a pattern that helps to transport warm air into the Arctic. In contrast, this summer was characterized by low sea level pressure over the central Arctic and Greenland. Cooler conditions have also led to less surface melting on the Greenland Ice Sheet.

Sea surface temperature trends

Figure 4: These maps show Arctic sea surface temperatures  (top) and temperature anomalies (bottom) for August 2013, in degrees Celsius. 

Credit: Michael Steele and Wendy Ermold, Polar Science Center, Applied Physics Lab, University of Washington
High-resolution image

Colleagues Michael Steele and Wendy Ermold at the University of Washington found that sea surface temperatures (SSTs) in the Arctic Ocean were above the 1982 to 2006 average during August, as has been the case since 2007. Sea ice retreat was later and not as extreme relative to recent years in the western Arctic (i.e., the Beaufort, Chukchi, and East Siberian seas) and as a result, SSTs were near the long-term average there. SSTs were well above average in the eastern Arctic (Laptev, Kara, and Barents seas). This can be linked to early ice retreat in the Laptev Sea. However, warm conditions in the southern Barents and Kara seas are likely influenced by advection of warm water from the south in the Norwegian Sea. Overall, for the period 2007 to 2013 there is a pattern of declining SSTs in the western Arctic, and increasing SSTs in the eastern Arctic.

Antarctic sea ice extent

Figure 5. XXXXXXInsertCaptionhereXXXXXXX.||Credit: The University of Bremen/AMSR2 for the top images and NOAA/ESRL Physical Sciences Division for the bottom images|High-resolution image

Figure 5. Sea ice extent data from high-resolution passive microwave data (top left and right), and climate data for the period August 15 to September 15, 2013 (bottom images). These images show Antarctic sea ice extent near the satellite-era record high set last year. The geopotential height at 850 millibars (lower left) is an indication of the relative air pressure at ~5000 feet (~1500 meters) above sea level. This shows an unusually broad area of high pressure encompassing the entire continent out to near the sea ice edge, and low pressure surrounding that outside the edge – the opposite of the general trend. This has greatly reduced the average westerly wind flow (shows as negative values in the zonal wind plot, lower right), making for light winds at the sea ice edge.

Credit: University of Bremen/AMSR2 (top images) and NOAA/ESRL Physical Sciences Division (bottom images).
High-resolution image

As ice extent approaches its summer minimum in the Arctic, the winter maximum is near for Antarctica. This year, as was the case in 2012, Antarctic sea ice extent is very high. As of September 16, the current extent is 19.45 million square kilometers (7.51 million square miles), a record for this date with respect to the 1979 to 2012 satellite era. This is about 3.9% above the average maximum extent for the 30-year comparison period 1981 to 2010. In contrast, this year’s Arctic summer minimum ice extent is approximately 30% below levels seen in the early 1980s, and the 2012 record low extent was around 60% below levels seen in the same period. This helps to highlight why scientists are more concerned by Arctic ice shrinkage than by Antarctic ice expansion.

Antarctic weather patterns in August were unusual. Contrary to a 50-year trend towards stronger westerly wind flow—a pattern associated with both ozone loss and increased heat-trapping gases in the atmosphere—August 2013 saw a period of very low westerly wind speed across the continent.

* Note: On September 19, 2013, we revised a sentence in this section for clarity. A sentence that originally read, “In contrast, this year’s Arctic summer minimum ice extent is approximately 30% below the 30-year period average, and the 2012 record low extent was nearly 60% below the average.” now reads, “In contrast, this year’s Arctic summer minimum ice extent is approximately 30% below levels seen in the early 1980s, and the 2012 record low extent was around 60% below levels seen in the same period.”

A real hole near the pole

Sea ice continued its late-season summer decline through August at a near-average pace. Ice extent is still well above last year’s level, but below the 1981 to 2010 average. Open water was observed in the ice cover close to the North Pole, while in the Antarctic, sea ice has been at a record high the past few days.

Overview of conditions

Figure 1. Arctic sea ice extent for August 2013 was X.xx million square kilometers (X.XX million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for August 2013 was 6.09 million square kilometers (2.35 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent for August 2013 averaged 6.09 million square kilometers (2.35 million square miles). This was 1.13 million square kilometers (398,000 square miles) below the 1981 to 2010 average for August, but well above the level recorded last year, which was the lowest September extent in the satellite record. Ice extent this August was similar to the years 2008 to 2010. These contrasts in ice extent from one year to the next highlight the year-to-year variability attending the overall, long-term decline in sea ice extent.

Extent in the Beaufort and Chukchi seas has dropped below average, after near average conditions in July. The only region with average extent is the East Siberian Sea.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of September 4, 2013, along with daily ice extent data for the previous five years. 2013 is shown in light blue, 2012 in green, 2011 in orange, 2010 in light purple, 2009 in dark blue, and 2008 in dark purple. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of September 4, 2013, along with daily ice extent data for the previous five years. 2013 is shown in light blue, 2012 in green, 2011 in orange, 2010 in light purple, 2009 in dark blue, and 2008 in dark purple. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Relatively cool conditions over the central Arctic Ocean continued, a pattern that has characterized this summer. Temperatures at the 925 hPa level in the high Arctic (north of Greenland to the North Pole) were 0.5 to 3 degrees Celsius (1 to 5 degrees Fahrenheit) below the 1981 to 2010 average. In comparison, temperatures in coastal areas of the Arctic were mostly near average, and temperatures in the Barents and Beaufort seas were about 2 degrees Celsius (4 degrees Fahrenheit) above average. The distribution of the temperature anomalies can be related to the sea level pressure pattern. Below-average sea level pressures were linked to cloudy and cool conditions near the North Pole and extending into the northern North Atlantic. In contrast, above-average pressures dominated the Eurasian coast.

August 2013 compared to previous years

Figure 3. Monthly June ice extent for 1979 to 201X shows a decline of X.X% per decade.||Credit: National Snow and Ice Data Center |High-resolution image

Figure 3. Monthly August ice extent for 1979 to 2013 shows a decline of 10.6% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The seasonal decline of extent through the month of August was slightly above average at 56,400 square kilometers (21,800 square miles) per day, but more than a third slower than the record decline rate in August 2012. This year’s August extent was the sixth lowest in the 1979 to 2013 satellite record.

August 2013 ice extent was 1.38 million square kilometers (533,000 square miles) above the record low August extent in 2012. The monthly trend is –10.6% per decade relative to the 1981 to 2010 average.

Water near the pole

Figure 4. This image from the AMSR2 satellite instrument shows Arctic sea ice concentration for September 2, 2013. A dark blue area of apparent open water can be seen near the North Pole, surrounded by a low ice concentration area. The gray circle indicates where the instrument did not acquire data, due to its orbit.|\Credit: NSIDC/University of Bremen|High-resolution image

Figure 4. This image from the AMSR2 satellite instrument shows Arctic sea ice concentration for September 2, 2013. A dark blue area of apparent open water can be seen near the North Pole, surrounded by a low ice concentration area. The gray circle around the North Pole indicates where the instrument did not acquire data, due to its orbit.

Credit: NSIDC/University of Bremen
High-resolution image

Earlier this summer, there was considerable interest in seeing liquid water in the North Pole Environmental Observatory (NPEO) web cam. As explained in our August 7 post, that region was simply a shallow melt pond of water atop the ice and not an actual opening in the ice. Nevertheless, our August 19 post described an extensive region of low ice concentration located fairly close to the pole.

Now, a large hole (roughly 150 square kilometers or 58 square miles) of near-zero ice concentration appears to have opened up at about 87 degrees North latitude. Small areas of open water are common within the ice pack, even at the North Pole, as the ice pack shifts in response to winds and currents, resulting in cracks (called leads) in the ice. The current opening seen in our satellite imagery is much larger. In 2006, a larger polynya appeared in the Beaufort and Chukchi seas, but it was much farther south.

Melting ice from above and below

Figure 4. . Results from six ice mass balance buoys that operated throughout the summer of 2013. The red dot denotes the buoy position on 28 August 2013. The red bar indicates the total amount of summer surface melt and the yellow bar shows bottom melt. The white background is the MASIE ice extent on 28 August 2013 mapped on Google Earth.||Credit: Julienne Stroeve/National Snow and Ice Data Center |High-resolution image

Figure 5. This map of the Arctic shows results from six ice mass balance buoys that operated throughout the summer of 2013. A red dot denotes each buoy position on August 28, 2013. The red bars indicate the total amount of summer surface melt and the yellow bars show bottom melt. The white background is the MASIE ice extent on August 28, 2013 mapped on Google Earth.

Credit: NSIDC courtesy Jackie Richter-Menge and Don Perovich/CRREL
High-resolution image

It may seem contradictory for a polynya-like opening to form near the pole while temperatures are lower than average, but it highlights the complex interplay between the ice, atmosphere, and ocean. Such openings in the ice occur two ways: through winds pushing the ice apart, or through melting. Both processes likely played a role in forming the current opening, but another key factor is a significant amount of thin, first-year ice in the region. This thin ice was more likely to melt completely than surrounding thicker ice. Heat from the ocean also contributes to melting of the ice from below, even though air temperatures have been below average in the region. Buoys that measure ice mass can provide information on surface and bottom melting.

During the summer of 2013 there were six ice mass balance buoys deployed in the Arctic over a wide area (red dots in Figure 5). The buoys were deployed in undeformed, multiyear ice, with a thickness between 2.2 and 3.5 meters (7 and 11 feet) before melt began. Data from the buoys show that the amount of surface ice melting ranged from 0 in the central Arctic, to 75 centimeters (30 inches) in the Beaufort Sea. Bottom melting varied from 8 to 108 centimeters (3 to 43 inches). The largest amount of bottom melting was observed at a buoy near the ice edge in the Beaufort Sea. This buoy had the largest total amount of melt, thinning from 339 centimeters (133 inches) in early June, to 157 centimeters (62 inches) on August 28. Ice thicknesses at the other buoys on August 28 ranged from 121 to 267 centimeters (48 to 105 inches). While bottom melting is continuing in some locations, most of this year’s surface melting has occurred. Data from the ice mass balance buoys are available at http://imb.crrel.usace.army.mil. (Thanks to Jackie Richter-Menge and Don Perovich at the Cold Regions Research and Engineering Laboratory [CRREL] for this part of the discussion.)

The balding Arctic

Arctic sea ice extent maintained a steady, near-average pace of retreat through the first half of August, making it highly unlikely that a new record low minimum will be reached this year. Nevertheless, there are extensive areas of low concentration ice, even in regions close to the North Pole, atmospheric pressure and temperature patterns this summer have differed markedly from those experienced in 2012; cooler than average conditions have prevailed over much of the Arctic Ocean. By contrast, Antarctic sea ice is near a record maximum extent for mid-August.

Overview of conditions

Figure 1. Arctic sea ice extent for August 18, 2013 was XX million square kilometers (XX million square miles). The orange line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole.  Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for August 18, 2013 was 5.94 million square kilometers (2.30 million square miles). The orange line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice retreat through the first half of August was near average, bringing the ice extent to 5.94 million square kilometers (2.30 million square miles). Sea ice extent continues to track well below average levels (average of 1981 to 2010), though remains within two standard deviations of the long-term mean. Retreat rates increased slightly in the western Beaufort Sea and Chukchi Sea, but ice cover remains extensive in those regions compared to 2012. Another major difference between ice extent during 2012 and this year is the much greater extent in the East Siberian Sea. Low ice extent in this region observed last year was in part attributed to the effects of the “Great Cyclone of 2012” (see previous post of August 14, 2012). On the eastern side of the Arctic near Europe and Greenland, the extent remains below average.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of August 18, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of August 18, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

The sea ice retreat rate averaged from August 1 to 18 was near average at approximately 75,000 square kilometers (29,000 square miles) per day. However, satellite data show extensive low-concentration areas within the ice cover, which appear to have developed in response to the frequent passage of storm systems. These weather patterns also result in lower-than-average air temperatures over the Arctic. Temperatures in the central Arctic at the 925 hPa level have been 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) below average since late July.

A bit thin on top

Figure 3. This composite shows an AMSR-2 sea ice concentration map (top) and a MODIS true-color composite image (bottom) of the Arctic for August 14, 2013. Clouds in the MODIS scene obscure some of the ice edges seen in the AMSR-2 data set.||Credit: University of Bremen/AMSR2; NASA/GSFC, Rapid Response|High-resolution image

Figure 3. This composite shows an AMSR-2 sea ice concentration map (top) and a MODIS true-color composite image (bottom) of the Arctic for August 14, 2013. Clouds in the MODIS scene obscure some of the ice edges seen in the AMSR-2 data set.

Credit: University of Bremen/AMSR2; NASA/GSFC, Rapid Response
High-resolution image

Satellite data from the AMSR-2 instrument and MODIS show an unusually large expanse of low-concentration sea ice (20 to 80% cover) within our extent outline (15% or greater, using the SSM/I sensor) spanning much of the Russian side of the Arctic and extending to within a few degrees of the North Pole. A small area north of the Kara Sea has concentrations below 30%. This is likely in part a result of the dispersive effect of low-pressure systems that have migrated across the central Arctic over the past month. While some of the low concentrations recorded by AMSR-2 may be due to surface melt on sea ice, the MODIS image confirms that a large region is covered by isolated floes. The tendency towards a more open pack, with large areas of open water between ice floes, has increased in the past decade as the ice cover has thinned, as well as a tendency for formation of large polynyas (see ASINA posts for September 2006) and areas of pack detached from the main Arctic ice cover (such as mid-August 2012). The University of Washington’s Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) model and other models of ice thickness continue to indicate thin ice cover this summer.

Not like last year

Figure 4. These images compare air temperatures at 925 mb (about 2500 feet above sea level) and air pressures at sea level for June through July, 2012 (left side) and June to July 2013 (right side). ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 4. These images compare air temperatures at 925 mb (about 2500 feet above sea level) and air pressures at sea level for June through July, 2012, (left side) and June to July 2013 (right side).

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

A comparison of average temperature and sea level pressure maps for June and July of 2012 (left diagrams) and 2013 (right diagrams) help us to understand why ice extent is higher in 2013. The pattern of unusually low pressure centered near the pole in 2013 has helped to spread the ice out and is consistent with generally cool conditions over much of the Arctic Ocean, inhibiting melt. By contrast, in the summer of 2012, a broad region of unusually high pressure centered over Greenland, in combination with below average pressure centered over the East Siberian and Chukchi seas, led to winds over the Beaufort Sea with a more southerly component than is usually the case, leading to warm conditions. That high pressure last year over Greenland also contributed to a record melt season for the Greenland ice sheet. Melt this year over the ice sheet has been more moderate, though still above rates seen in the 1990s. See our upcoming Greenland Today site post later this week.

Can’t get there from here

Figure 5. The graph above shows projections of ice extent from August 1 through September 30th based on observed retreat rates appended to the August 18, 2013 ice extent. None of the observed patterns of the past few years, or the mean loss rates, bring the ice extent below 4.0 million square kilometers (1.56 million square miles).  Sea Ice Index  data.||Credit: National Snow and Ice Data Center|  High-resolution image

Figure 5. The graph above shows projections of ice extent from August 1 through September 30 based on observed retreat rates appended to the August 18, 2013 ice extent. None of the observed patterns of the past few years, or the mean loss rates, bring the ice extent below 4.0 million square kilometers (1.56 million square miles). Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Projections of the likely minimum extent this year based on retreat rates from past years argue that it is highly unlikely that sea ice will surpass the record-setting low extent seen in 2012. With retreat rates similar to those of 2007 to 2012, the minimum extent would be near 5.0 million square kilometers (2.0 million square miles) in mid-September.

Record extent in the Antarctic

Figure 6. Antarctic daily sea ice extents for 2013, 2010, 2007, and the 1981 to 2010 mean for the past few months. Sea Ice Index data.||Credit: University of Bremen/AMSR2|High-resolution image

Figure 6. Antarctic daily sea ice extents for 2013, 2010, 2007, and the 1981 to 2010 mean for the past few months. Sea Ice Index data.

Credit: University of Bremen/AMSR2
High-resolution image

Antarctic sea ice extent for August 19 is 18.70 million square kilometers (7.22 million square miles), a record or near-record high level (August 19, 2010 was similarly high), led by unusually extensive ice in the Bellingshausen, Amundsen, and Ross seas, and in the western Indian Ocean sector. Climate conditions since June have been variable, but the most recent surge in ice growth has occurred during a period of unusually high pressure over the center of the continent, resulting in a slowing of the circumpolar winds, warm winter conditions for the central ice sheet areas (Vostok Station and Amundsen-Scott South Pole Station both had periods of spring-like -30s earlier in the month), and cold conditions in the Bellingshausen, allowing ice to grow extensively there.

A month of two halves and no hole

Following rapid ice loss in the first half of July, the pace of seasonal ice retreat slowed the rest of the month partly due to the return of a stormy weather pattern over the central Arctic Ocean. The timing of melt onset for 2013 was in general unremarkable. Ice extent remains below average on the Atlantic side of the Arctic, and near average in the Beaufort and Chukchi seas, and along the Eurasian coast.

Overview of conditions

Figure 1. Arctic sea ice extent for July 2013 was 8.5 million square kilometers (3.26 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole.  Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for July 2013 was 8.45 million square kilometers (3.26 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent for July 2013 averaged 8.45 million square kilometers (3.26 million square miles). This is 1.25 million square kilometers (483,000 square miles) below the 1981 to 2010 average for the month (Note that on July 2, 2013, NSIDC began using a new 30-year baseline for analyzing sea ice.). Ice extent remains below average on the Atlantic side of the Arctic, and is near average to locally above average in the Beaufort and Chukchi seas and along much of the Eurasian coast.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of August 4, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of August 4, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

While sea ice extent retreated rapidly through the first two weeks of July when the weather was dominated by high pressure and clockwise winds over the central Arctic Ocean, the pace of ice loss for the last half of the month was slower. This was partly due to the return of a stormy pattern that brought more counterclockwise winds and cool conditions, and spread the ice out. This spreading of the ice, or ice divergence, can result in more dark open water areas between individual floes that enhance absorption of the sun’s energy, leading to more lateral and basal melting. However, the effects of cooler conditions and ice divergence on the overall ice extent depend in part on the thickness of the ice. Historically, stormy summers tended to end up with more ice than summers characterized by high pressure and few storms. As the ice cover has thinned, stormy conditions may actually help to remove more ice.

July 2013 compared to previous years

Figure 3. Monthly July ice extent for 1979 to 2013 shows a decline of 7.14% per decade relative to the 1981 to 2010 average.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 3. Monthly July ice extent for 1979 to 2013 shows a decline of 7.4% per decade relative to the 1981 to 2010 average.

Credit: National Snow and Ice Data Center
High-resolution image

Overall, extent dropped an average of 105,000 square kilometers (41,000 square miles) per day through the month, the second fastest July ice loss in the satellite record after 2007, and much higher than the 1981 to 2010 average. However, this number averages the rapid ice loss during the first half of the month with the slower loss during the second half of the month. July 2013 was the fifth lowest July in the 1979 to 2013 satellite record, and 540,000 square kilometers (208,000 square miles) above the record low in 2011. The monthly trend is ‑7.4% per decade relative to the 1981 to 2010 average (also ‑7.1% per decade relative to the old 1979 to 2000 baseline).

Summer storms

Summer is the stormiest season over the central Arctic Ocean, but the situation can vary greatly within a month (as has been the case for July 2013), from month to month, and year to year. The summer storms in this region can occasionally be quite strong and there has been some discussion that, like hurricanes, strong Arctic storms should be named, perhaps drawing on the Inuit language. Last August, a cyclone in the region attained a central pressure as low as 964 hPa, with attendant strong winds. As just discussed, summers characterized by stormy conditions tend to end up with more sea ice than summers characterized by high pressure. However, the effects of an individual strong storm can be complex. It appears that the August 2012 storm was attended by a modest acceleration in the pace of summer ice loss. While the middle of July 2013 also saw a storm over the central Arctic Ocean with a central pressure of 977 hPa, this year’s event has not led to a strong ice loss.

A note on melt ponds

Figure4

Figure 4. These comparison images show the North Pole Web Cam on July 25, 2013 (top), and July 30, 2013 (bottom).

Credit: North Pole Environmental Observatory
High-resolution image

There have been confusion and misinformation on several Arctic- and climate-focused Web blogs regarding the presence of a lake at the North Pole, as viewed from the North Pole Webcam, which is part of the North Pole Environmental Observatory (NPEO). First, the webcam is not at the North Pole. Because of the drift of the ice, as of this week it is actually located at about 84 degrees North near the prime meridian. Second, the so-called lake is nothing more than a large summer melt pond atop the ice cover, and is not, as some have said, a hole or a polynya in the ice cover. While quite extensive by July 26, the pond appears to have largely disappeared by July 30, by draining off the sea perhaps through a fracture, followed by a dusting of snow. See the NPEO’s FAQ on the melt ponding this year.

*Note: A reader called our attention to details in the North Pole Web Cam images of the recent melt pond. After examining these and conferring with other researchers, we have revised the sentence that reads: “While quite extensive by July 26, the pond appears to have largely disappeared by July 30 under what is probably a thin layer of ice covered with a dusting of snow.” The updated version now reads “While quite extensive by July 26, the pond appears to have largely disappeared by July 30, by draining off the sea perhaps through a fracture, followed by a dusting of snow.”

 Onset of summer melt

Figure 5. The graph above compares melt onset dates for sectors of the Arctic Ocean. ||Credit: National Snow and Ice Data Center| High-resolution image

Figure 5. The graph above compares melt onset dates for sectors of the Arctic Ocean.

Credit: National Snow and Ice Data Center
High-resolution image

The same satellite passive microwave data that NSIDC uses to determine sea ice extent can also be used to determine the date of the onset of summer melt over the sea ice cover. Compared to the average over the period 1981 to 2010, the date of melt onset, as assessed for different sectors of the Arctic Ocean, was largely unremarkable. It was slightly earlier than average in some sectors but later than average in others.

Further reading

Serreze, M. C. and A. P. Barrett. 2008. The summer cyclone maximum over the central Arctic Ocean. Journal of Climate 21, doi:10.1175/2007JCLI1810.1.

Kwok, R. and N. Untersteiner. 2011. The thinning of the Arctic sea ice. Physics Today 64(4), April 2011, doi:10.1063/1.3580491.

Rosel, A., L. Kaleschke, and G. Birnbaum. 2011. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. The Cryosphere Discussions 5, 2991–3024, doi:10.5194/tcd-5-2991-2011.

 

A change of pace

Sea ice extent retreated fairly rapidly through the first two weeks of July as a high pressure cell moved into the central Arctic, bringing warmer temperatures over much of the Arctic Ocean. Ice extent remains below average on the Atlantic side of the Arctic, and is near average to locally above average in the Beaufort and Chukchi seas and along much of the Eurasian coast.

Overview of conditions

Figure 1. Arctic sea ice extent for July 15, 2013 was 8.20 million square kilometers (3.17 million square miles). The orange line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

While the rate of Arctic sea ice loss is normally fastest during July, the warmest month of the year, ice loss was even faster than usual over the first two weeks of July 2013. As a result, on July 15 extent came within 540,000 square kilometers (208,000 square miles) of that seen in 2012 on the same date. The ice loss is dominated by retreat on the Atlantic side of the Arctic, including the East Greenland, Kara and Laptev seas, and Baffin Bay. In the Beaufort and Chukchi seas and much of the Eurasian coast, the ice cover remains fairly extensive, especially compared to recent summers. Compared to the 1981 to 2010 average, ice extent on July 15, 2013 was 1.06 million square kilometers (409,000 square miles) below average.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of July 15, 2013, along with daily ice extent data for 2012, the record low year. 2013 is shown in blue, and 2012 in green. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

During the first two weeks of July, ice extent declined at a rate of 132,000 square kilometers (51,000 square miles) per day. This was 61% faster than the average rate of decline over the period 1981 to 2010 of 82,000 square kilometers (32,000 square miles) per day. The fast pace of ice loss was dominated by retreat in the Kara and East Greenland seas, where the ice loss rate from July 1 to 12 was -16,409 and -17,678 square kilometers (-6,336 and -6,826 square miles) per day, respectively. The Laptev Sea ice retreated at about half that rate, at -8,810 square kilometers (-3,402 square miles) per day.  In contrast, on the Pacific side, sea ice has been slow to retreat. During the first part of July, the rate of ice loss in the Beaufort and Chukchi seas was only -3,375 and -6,829 square kilometers (-1,303 and -2,637 square miles), respectively.

A change in the weather

Figure 3a

Figure 3a. This image of air temperature anomalies at the 925 hPa level from July 1 to 10 July 10, 2013 shows higher than average temperatures over the Arctic, especially over the Kara Sea. Air temperature anomalies are relative to the 1981 to 2010 average.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Fig3b

Figure 3b. This image of average sea level pressure from July 1 to 10, 2013 shows high pressure in the central Arctic.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Temperatures at the 925 hPa level for the first two weeks in July were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) above average over much of the Arctic Ocean and as much as 5 degrees Celsius (9 degrees Fahrenheit) above average over the Kara Sea, where ice loss was pronounced. In contrast, temperatures over Alaska, Siberia and the Canadian Arctic were 3 to 5 degrees Celsius (5 to 9 degrees Fahrenheit) lower than average.

Warmer conditions have been paired with a shift in the atmospheric circulation, with a high pressure cell at sea level pressure moving into the central Arctic, replacing then pattern of low pressure that dominated the month of June. This has helped to bring in warm air from the south over the Arctic Ocean. This pattern has also helped to create open water areas in the Laptev Sea because offshore winds push the ice away from shore.

 

Slow ice retreat along coastal Alaska and Canada

Figure 4.

Figure 4. This graph of sea ice extent in the Beaufort and Chukchi Seas as of July 12 each year shows an increase in ice extent in the Beaufort Sea over the last seven summers.

Credit: NSIDC
High-resolution image

The slow retreat of sea ice in the Beaufort Sea has resulted in the most extensive ice cover seen there in the last seven summers (Figure 4). Ice extent also remains rather extensive in the Chukchi Sea, though other recent years have seen more ice at this same time of year, particularly in 2012, when Shell was forced to delay drilling operations and reduce the number of wells planned. Despite extensive ice cover, visible imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument shows melt is well underway.

A new normal for Arctic sea ice

Arctic sea ice continues to track below average but remains well above the levels seen last year. The relatively slow ice loss is a reflection of the prevailing temperature and wind patterns. As of July 1, NSIDC Arctic Sea Ice News and Analysis and the Sea Ice Index have transitioned to a new 30-year baseline period, 1981 to 2010.

Overview of conditions

June 2013 sea ice extent

Figure 1. Arctic sea ice extent for June 2013 was 11.58 million square kilometers (4.47 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

June is a transition period for Arctic sea ice as 24-hour daylight reigns, and melt reaches towards the North Pole. Thus it is an appropriate time for NSIDC to transition to a new 30-year baseline period, also called a “climate normal.” The satellite record is now long enough to allow NSIDC to match current National Ocean and Atmospheric Administration (NOAA) and World Meteorological Organization (WMO) standard baselines of 1981 to 2010 for weather and climate data. Full details of the changes and the implications for NSIDC sea ice statistics are described in the NSIDC Sea Ice Index.

Average sea ice extent for June 2013 was 11.58 million square kilometers (4.47 million square miles). This was 310,000 square kilometers (120,000 square miles) below the 1981 to 2010 average (the new baseline period) of 11.89 million square kilometers (4.59 million square miles). In comparison, the 1979 to 2000 period that we previously used averaged 12.16 million square kilometers (4.70 million square miles). June 2013 was 760,000 square kilometers (293,000 square miles) above the record low June extent in 2010.

Conditions in context

graph of sea ice extent

Figure 2a. The graph above shows Arctic sea ice extent as of June 30, 2013, along with daily ice extent data for five previous years. 2013 is shown in blue, 2012 in green, 2011 in orange, 2010 in pink, 2009 in navy, and 2008 in purple. The 1981 to 2010 average is in dark gray. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

graph with both  baselines

Figure 2b. The graph above shows Arctic sea ice extent as of June 30, 2013, along with daily ice extent data for 2012, the record low year, and both the new and old baseline average periods. The 1981 to 2010 average is shown by a dark gray line. The gray area around this average line shows the two standard deviation range of the 1981 to 2010 average. The 1979 to 2000 average is shown by a blue line. The light purple shading around this line shows the two standard deviation range of the 1979 to 2000 average.

Credit: National Snow and Ice Data Center
High-resolution image

Although the rate of ice loss increased toward the end of June, overall ice has retreated more slowly this summer compared to last summer, reflecting patterns of atmospheric circulation and air temperature. Average June temperatures at the 925 mb level were average to slightly below average over most of the Arctic Ocean, contrasting with above average temperatures over most of the surrounding land. This temperature pattern is associated with unusually low sea level pressure centered near the North Pole. This type of circulation pattern is known to slow the summer retreat of ice, not just because it fosters cool conditions, but also because the pattern of cyclonic (counterclockwise) winds tends to spread the ice out. An interesting regional aspect of this pattern is that on the heels of unusually cold spring conditions, the Alaska interior experienced some days of record high temperatures during June.

 

June 2013 compared to previous years

Monthly June ice extent

Figure 3. Monthly June ice extent for 1979 to 2013 shows a decline of 3.6% per decade relative to the 1981 to 2010 average.

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent declined steadily through most of the month, in sharp contrast to last year when June experienced a record fast pace of sea ice retreat. There was a speed-up in ice loss toward the end of the month. Overall, extent dropped an average of 70,300 square kilometers (27,000 square miles) per day through the month, slightly higher than the 1981 to 2010 average.

June 2013 was the 11th lowest June in the 1979 to 2013 satellite record, 760,000 square kilometers (293,000 square miles) above the record low in 2010. The monthly trend is -3.6% percent per decade relative to the 1981 to 2010 average (also -3.6% per decade relative to the old 1979 to 2000 baseline).

An Arctic pre-conditioned for rapid summer ice loss?

Figure 4. Data from NASA Operation IceBridge flights over the Arctic Ocean during March and April 2013 indicate

Figure 4. Data from NASA Operation IceBridge flights over the Arctic Ocean during March and April 2013 indicate thick ice along the Greenland coast (shown in reds), but thin ice north of Alaska (blues and greens).

Credit: National Snow and Ice Data Center/NASA Operation IceBridge
High-resolution image

Through most of June, we did not see the precipitous decline in ice extent that was observed in June 2012 and 2007 (the years with the lowest and second lowest September ice extent in the satellite record). However, the rate of ice loss did increase in late June. Ice cover this spring was very thin in parts of the Arctic, suggesting that large areas may soon start melting out completely. Much depends on whether the atmospheric circulation pattern seen in June persists through July.

NASA Operation IceBridge data collected during March and April indicated thick ice along the Greenland coast (5 meters, or 16 feet or more), but thin ice north of Alaska in the Beaufort and Chukchi seas, ranging from 1 to 1.5 meters (3 to 5 feet) in most areas and as low as 0.5 meters (approximately 2 feet) in others. These thin areas are quite likely refrozen leads, linked to the major fracturing events that occurred in the region during February and March. According to Andrew Shepherd at the University of Leeds, preliminary results from the European Space Agency CryoSat satellite suggest that the ice pack was 8% thinner in March 2013 compared to March 2012.

An ocean of small floes

figure5

Figure 5. High-resolution passive microwave data from AMSR2 on June 26, 2013 (left image) shows areas of low ice concentration near the North Pole, indicated in greens. Visible imagery from MODIS on June 27, 2013 (right image) of the inset area reveals a fractured ice surface with small floes.

Credit: University of Bremen/AMSR2; NASA/GSFC, Rapid Response
High-resolution image

High-resolution passive microwave concentration data from the Japan Aerospace Exploration Agency AMSR2 sensor, produced by the University of Bremen, indicate a highly unusual region of broken-up ice near the North Pole. Development of this low concentration ice may have been assisted by the cyclonic atmospheric pattern noted earlier.

While the AMSR2 image in Figure 5 suggests concentrations as low as 50%, visible imagery from the MODIS sensor on the NASA Aqua satellite indicate that AMSR2 is underestimating concentration, likely due to biases from surface melt.

Still, the MODIS data do confirm that the ice is highly fractured with numerous small floes. Such small floes are more easily melted from the sides and the bottom by ocean waters that are exposed to the 24-hour sunlight. It remains to be seen how many of these small floes will ultimately melt completely.